THE INTERNATIONAL JOURNAL OF BUSINESS & MANAGEMENT

Decision Analysis for Bumi Hitam Field Development by Using Analytical Hierarchy Process (AHP): Case Study of Pt Pertamina Ep

Bayu Apriansyah Engineer, Department of Subsurface Development & Planning, Pertamina EP Zone 7, Indonesia Santi Novani Assistant Professor, School of Business and Management, Institute Technology of Bandung, Indonesia

Abstract:

Zone 7 continues to decline. The achievement of gas production for PEP Zone 7 is only 94%. The gas balance shows that the gas supply from PEP Zone 7 cannot keep up with gas demand from consumers. PEP Zone 7, through the Subsurface Development Department, conducted a study on potential structures to increase gas production and supply capability. One of them is the Bumi Hitam Complex, consisting of the Bumi Hitam Structure and Cililin Selatan Structure. The estimated recoverable reserve is about 24 BSCF and 150 MBO. This comes from one workover, two infill well drilling, and two step-out drilling activities. The current issue is how to handle the produced fluid. The VFT (Value Focused Thinking) approach is used to resolve the problem. It generates three scenarios:

- Build a new gathering station and transport the fluid to compressor suction,
- Transport gross fluid to GS CLU,
- Build a new gathering station, and transport the fluid to compressor discharge.

Those scenarios consider cost, hydrocarbon recovery, net present value, and operability. Analytical Hierarchy Process (AHP) is used to find the best solution. Four subject matter experts (SMEs) conducted FGD (Focused Group Discussion) to assess each scenario considering those criteria. It generates a scenario to build a new gathering station and transport the fluid to compressor suction as the best scenario, with the value reaching 59.3%. The consistency ratio is also valid with the value of 0.07 (the valid value requirement is less than 0.1).

Keywords: Gas field development, decision making, analytical hierarchy process

1. Introduction

Pertamina EP (PEP) Zone 7, as the largest gas producer, is responsible for providing a certain amount of gas in accordance with technical specifications, including the agreed composition and pressure of the gas supplied. To meet the demand for natural gas, PEP Zone 7 undertakes field development efforts that have found resources that are considered to have the potential to be produced in a techno-economical manner. However, existing gas production in PEP Zone 7 continues to decline (Appendix-1). The achievement of gas production for PEP Zone 7 is only 94%.

In supporting the fulfillment of natural gas demand in the West Java area, Subsurface Department conducts a study and analysis of structures to be developed. One of the structures carried out by the study is the Bumi Hitam (BMH) Group structure, which consists of the adjacent BMH and Cililin Selatan (CLS) structures. Geographically, BMH is located ± 90 km from the city of Cirebon, West Java. In the northwest, it is bordered by North Cililin (CLU), East Cililin (CLT), and Bubulak Unggul (BBU) fields (Appendix-2). By volumetric calculation, the total in-place resources of the BMH and CLS structures are as follows.

Structure	Layer	Volumetric Gas (MMSCF)	Volumetric Oil (MSTB)
BMH	ABC	37,396.90	
	FRB	14,087.90	
	FAT		28,058.00
CLS	FRB		1,363.72
	FRB -1		1,176.73

Table 1: Inplace Volumetric of BMH Kompleks

Based on the table above, the largest gas volume is at the ABC Layer of the BMH Structure. Therefore, PEP Zone 7, through SSDP Department, plans the following work program.

			Tar	get Rate
No	Well	Job Type	Qoi	Qgi
			(BOPD)	(MMSCFD)
1	BMH-01	Workover		4
2	BMH-INF1	Drilling		4
3	CLS-INF	Drilling	250	
4	BMH-STOA	Drilling		2
5	BMH-STOB	Drilling		2
	T / / O ///			

Table 2: Work Program of BMH Group Development

The current concern is the handling of produced fluids. The closest production facility to the BMH structure is the Gathering Station (GS) of North Cililin (CLU), which is 17 kilometers (km) away. Near GS CLU, there is also a Gas Compression Station (GCS) Cilamaya to compress the gas so that the pressure is sufficient to reach the consumer. Therefore, it is necessary to consider the production fluid flow scenario technically and economically. The produced fluid can be directly sent on a gross basis to GS CLU. The produced fluid can also be processed first by building a new facility in the BMH area. Then the pure gas can be sent to the Cilamaya GCS. Produced fluid can also be flowed to the nearest network within 10 km. However, the network is a discharge from the Cilamaya GCS, so it is a high-pressure network.

2. Methods

The scenario of developing a gas field is not as easy as developing an oil field, wherein the development of a gas field, there must be adequate facilities for selling gas to consumers. Kepner-Tregoe (KT) Problem Analysis and fishbone diagram is used to understand the problem better. (Appendix 3 and Appendix 4)

The issue that arises from the planned development of the BMH structure is the location of the area, which is relatively far from the existing production facilities that are actively operating (Appendix 5). The Value Focused Thinking (VFT) framework is used to generate alternative solutions. Focused group discussions are conducted by involving several subject matter experts who have sufficient competence and experience to be able to produce the right decisions. The composition of the subject matter expert consists of the subsurface team, surface team, and development and planning team.

Member	Position	Experience
Expert 1	Sr. G&G Engineer	11 years
Expert 2	Sr. Reservoir Engineer	11 years
Expert 3	Sr. Project Engineering Engineer	15 years
Expert 4	Sr. Dev. & Planning Engineer	15 years

Table 3: Subject Matter Experts

Values are what we care about. Therefore, they must be the driving force for making our decision. Alternatives are simply means of achieving better value (Keeney, 1996). Value-Focused Thinking (VFT) is a way of thinking that focuses on the fundamental objectives of a decision maker. VFT starts with identifying the objectives, then criteria and/or sub-criteria identification, and finally, creating alternatives. From the discussion among the experts, Appendix-6 is an illustration of VFT to get alternatives.

Based on the VFT above, it has developed three scenarios (Appendix-7) to handle the produced fluid to commercialize BMH Structure.

- Scenario 1: New Gathering Station (GS) and transport to the suction of Gas Compression Station (GCS)
 A new facility is built in this scenario to process the produced fluid. The gas is flowed to the compressor suction in
 Cilamaya. The length of the gas pipeline required is about 17 km. Meanwhile, oil and water are pumped to Booster
 Cillin using a 17 km long liquid pipeline.
- Scenario 2: Transport gross In this scenario, there is no construction of new facilities in the BMH area. Instead, the produced gas is brought to the Cililin Gathering Station (GS) using a 23 km gas pipeline.
- Scenario 3: New Gathering Station (GS) and transport to the discharge of Gas Compression Station (GCS)
 This scenario is similar to scenario 1, except that the gas processed in the new GS will be channeled to the nearest
 gas pipeline at a distance of 10 km. However, that pipeline has a relatively high pressure because it is in the
 discharge position from the compressor.

As stated in each scenario above, the criteria and sub-criteria are described as follows.

Criteria/Sub-Criteria	Description	
Cost	Sum of the cost needed to apply the alternative	
	(capital and operating cost)	
Capital Expenditure	Cost for investment such as purchasing material,	
	fabricating, and commissioning	
Operating Expenditure	Cost related alongside operating phase, such as	
	maintenance, chemical consumption, operator salary,	
	transportation, etc.	
Benefit	The advantage that can be obtained	
Hydrocarbon Recovery	The amount of cumulative hydrocarbon that can be	
	produced from chosen alternative	
Net Present Value	Cumulative cash flow over a period of time projected to the	
	present considering the discount factor.	
Risk in Operation	The potential danger that can occur at the chosen	
	alternative	

Table 4: Description of Criteria/Sub-Criteria

After several alternatives are generated, the next step is to select the best alternative using Analytical Hierarchy Process (AHP). Thomas Saaty developed this method in the 1970s. AHP has been widely used in decision-making in several areas such as planning, economics, material handling, energy policy, project selection, and budget allocation (Goodwin & Wright, 2010).

2.1. Step-1: Setting up the Decision Hierarchy

The hierarchy design consists of goals, criteria, sub-criteria, and alternatives. (Appendix-8)

2.2. Step-2: Making a Pairwise Comparison

This step collects the data from subject matter experts (Table 3) regarding the relative importance rating from a criterion compared to another criterion and from an alternative to another based on the attributes. The importance rating is defined as follows.

Importance	Rating
Equally important	1
Weakly more important	3
Strongly more important	5
Very strongly more important	7
Extremely more important	9
	·

Table 5: Importance Rating

The collected data from the experts are as follows.

	Numerical Rating Importance										
Cost vs Benefis	Costs	9	7	5	3	1	3	5	7	9	Benefits
COST	Capex	9	7	5	3	1	3	5	7	9	Opex
	New GS & transport to suction GCS	9	7	5	3	1	3	5	7	9	Transport Gross
	New GS & transport to suction GCS	9	7	5	3	1	3	5	7	9	New GS & transport to discharge GCS
Capex	Transport Gross	9	7	5	3	1	3	5	7	9	New GS & transport to discharge GCS
	New GS & transport to suction GCS	9	7	5	3	1	3	5	7	9	Transport Gross
	New GS & transport to suction GCS	9	7	5	3	1	3	5	7	9	New GS & transport to discharge GCS
Opex	Transport Gross	9	7	5	3	1	3	5	7	9	New GS & transport to discharge GCS
	New GS & transport to suction GCS	9	7	5	3	1	3	5	7	9	Transport Gross
	New GS & transport to suction GCS	9	7	5	3	1	3	5	7	9	New GS & transport to discharge GCS
HC Recovery	Transport Gross	9	7	5	3	1	3	5	7	9	New GS & transport to discharge GCS
	New GS & transport to suction GCS	9	7	5	3	1	3	5	7	9	Transport Gross
	New GS & transport to suction GCS	9	7	5	3	1	3	5	7	9	New GS & transport to discharge GCS
NPV	Transport Gross	9	7	5	3	1	3	5	7	9	New GS & transport to discharge GCS
	New GS & transport to suction GCS	9	7	5	3	1	3	5	7	9	Transport Gross
	New GS & transport to suction GCS	9	7	5	3	1	3	5	7	9	New GS & transport to discharge GCS
Risk Operation	Transport Gross	9	7	5	3	1	3	5	7	9	New GS & transport to discharge GCS
	Hydrocarbon Recovery	9	7	5	3	1	3	5	7	9	NPV
	Hydrocarbon Recovery	9	7	5	3	1	3	5	7	9	Risk Operation
Downer	NPV	9	7	5	3	1	3	5	7	9	Risk Operation

 Table 6: Collected Data for Pairwise Comparison

Based on the data collected, as shown in Table 7, the next step is to process the data in every criteria/sub-criteria.

2.2.1. Cost versus Benefit

Cost Vs. Benefits	Cost	Benefits
Cost	1.000	0.184
Benefits	5.439	1.000
Total	6.439	1.184

Table 7: Comparison of Cost versus Benefit

From the data above, all experts agreed that benefits are more important than the cost.

2.2.2. Cost Criteria Analysis

Capex VS Opex	Capex	Орех
Сарех	1.000	2.280
Орех	0.439	1.000
TOTAL	1.439	3.280
Table 9: Comparison	a of Capay yorcu	Opay

Table 8: Comparison of Capex versus Opex

Capex is considered more important than Opex. This is reasonable because the value of Capex is greater than Opex in this project.

2.2.3. Capex Analysis

Capex attribute	New GS & transport to suction GCS	Transport Gross	New GS & transport to discharge GCS
New GS & transport to suction GCS	1.000	1.000	0.439
Transport Gross	1.000	1.000	0.439
New GS & transport to discharge GCS	2.280	2.280	1.000
Column Total	4.280	4.280	1.877

Table 9: Comparison in Capex

Building a new gathering station in the BMH area and transporting the fluid to discharge of compressor is preferable.

2.2.4. Opex Analysis

Opex attribute	New GS & transport to suction GCS	Transport Gross	New GS & transport to discharge GCS
New GS & transport to suction GCS	1.000	1.524	0.333
Transport Gross	0.656	1.000	0.184
New GS & transport to discharge GCS	3.000	5.439	1.000
Column Total	4.656	7.963	1.517

Table 10: Comparison in Opex

Building new GS & transport to discharge GCS is preferable based on operating cost criteria. Therefore, that alternative gave the cheapest operating cost.

2.2.5. Benefit Criteria Analysis

	Hydrocarbon Recovery	NPV	Risk Operation
Hydrocarbon Recovery	1.000	0.209	0.577
NPV	4.787	1.000	4.401
Risk Operation	1.732	0.227	1.000
Column Total	7.519	1.436	5.978

Table 11: Comparison of Benefit criteria

NPV is considered the most important attribute compared to other attributes.

2.2.6. Hydrocarbon Recovery Analysis

	New GS & Transport to Suction GCS	Transport Gross	New GS & Transport to Discharge GCS
New GS & transport to suction GCS	1.000	1.000	5.916
Transport Gross	1.000	1.000	5.916
New GS & transport to discharge GCS	0.169	0.169	1.000
Column Total	2.169	2.169	12.832

Table 12: Comparison of HC Recovery

Scenario 3 is: it resulted in the lowest hydrocarbon recovery.

2.2.7. NPV Analysis

	New GS & Transport to Suction GCS	Transport Gross	New GS & Transport to Discharge GCS
New GS & transport to suction GCS	1.000	3.000	7.937
Transport Gross	0.333	1.000	5.439
New GS & transport to discharge GCS	0.126	0.184	1.000
Column Total	1.459	4.184	14.376

Table 13: Comparison of NPV

Scenario to build new GS & transport to suction GCS gives the highest NPV. So, all the experts agreed that that scenario is preferable to the others.

2.2.8. Risk Operation Analysis

	New GS & Transport to Suction GCS	Transport Gross	New GS & transport to discharge GCS
New GS & transport to suction GCS	1.000	3.873	3.000
Transport Gross	0.258	1.000	0.293
New GS & transport to discharge GCS	0.333	3.409	1.000
Column Total	1.592	8.282	4.293

Table 14: Comparison of Risk Operation

All experts agreed that the scenario of building new GS & transport to suction GCS is preferable.

3. Synthesize the Result

The third AHP step contains data processing from comparison to weighing by making a matrix of comparison, representing it as a relative priority vector or Eigen Vector, and then checking the Consistency Ratio (CR). The stages in this step are:

- Step A: Multiplying the Eigen Vector and the importance rating in each criterion and alternative.
- Step B: Dividing the result in Step A by the Eigen Vector in each row. •
- Step C: Calculate the average value in step B as λ max.
- Step D: Calculate the consistency index.

$$CI = \frac{\lambda \max - n}{1 - 1}$$

n-1

n is the number of items compared

Step E: Calculate the Consistency Ratio

When CR is less than or equal to 0.1, then it is acceptable.

Attribute	Consistency Ratio
Cost versus Benefit	-
Cost	-
Benefits	0.021
Сарех	0.000
Opex	0.003
HC Recovery	0.000
NPV	0.050
Risk Operation	0.092
T-11.15 D	1.1

Table 15: Recap of Consistency Ratio

The CR of all attributes is less than 0.1. So, the analysis of the consistency ratio showed that experts' judgment has already been consistent. Therefore, the process of AHP can continue to the next step, determining the priority ranking. The chart in Appendix 9 describes the hierarchy tree of weighed of all criteria/ sub-criteria and alternatives.

Each value of the Eigen Vector of each scenario is multiplied by the value of the normalized weight of a subcriteria. The result is as follows.

			Alternatives									
Criteria		\$	Sub-Criteria			New GS & transport to suction GCS		Transport Gross		New GS & transport to discharge GCS		
	Weigh	CR		Weigh	Normalized	CR	Weigh	Normalized	Weigh	Normalized	Weigh	Normalized
Cost 0.155	ost 0.155		Capex	0.695	0.108	0.000	0.234	0.025	0.234	0.025	0.533	0.058
		-	Opex	0.305	0.047	0.003	0.209	0.010	0.129	0.006	0.662	0.031
			HC Recovery	0.125	0.106	0.000	0.461	0.049	0.461	0.049	0.078	0.008
Benefits 0.845	0.021	NPV	0.690	0.583	0.050	0.651	0.380	0.282	0.164	0.067	0.039	
			Risk Operation	0.185	0.157	0.092	0.598	0.094	0.117	0.018	0.285	0.045
								0.557		0.263		0.180

Table 16: Priority Ranking

The normalized value in each alternative is summarized. The biggest value is 0.557 with a new GS construction scenario and gas transport to the suction of GCS. The second rank is transporting gross right away to Cililin Gathering Station with the value of 0.263. Finally, the least priority with the value of 0.180 is building a new gathering station and transporting gas to the discharge of GCS.

4. Conclusion

By using the fishbone diagram tool and discussion among experts, there are several possible root causes from the Method, Tool, Man, and Environment aspects.

- Method: The scenario to handle the produced fluid is not defined yet.
- Tool: License number of software to design surface facilities is limited
- Man: Employee placement is unbalanced after the new reorganization.
- Environment: The area of BMH is relatively far from nearby facilities. The true controllable cause of the problem is that the scenario to handle the produced fluid is not defined yet.

What distinguishes one solution from another can be seen from the criteria/sub-criteria used. The summary of the criteria/ sub-criteria for each alternative is as follows.

Criteria	Scenario 1	Scenario 2	Scenario 3	Weigh
Сарех	USD 35.82 Million	USD 35.19	USD 34.07	0.108
		Million	Million	
Opex	USD 19.6 Million	USD 23 Million	USD 15.65	0.047
			Million	
HC Recovery	23.5 BSCF	23.5 BSCF	18.83 BSCF	0.106
NPV	USD 15.85 Million	USD 14.82	USD 9.99	0.583
		Million	Million	
Risk Operation	Low to Medium	Medium to	Medium	0.157
		High		

Table 17: Result Summary

Based on the data processing results on the AHP, the best alternative for handling the produced fluid from BMH is to build a new gathering station in the BMH area and transport the gas to the suction of the gas compression station. The preference result is 55.7%.

5. References

- i. Ciocoiu, Carmen & ILIE, Gheorghe. (2010). Application Of Fishbone Diagram To Determine The Risk Of An Event With Multiple Causes. Management Research and Practice. 2. 1-20.
- ii. Coccia, Mario. (2017). The Fishbone Diagram To Identify, Systematize And Analyze The Sources Of General Purpose Technologies. 4. 291-303.
- iii. Goodwin P., Wright, G., (2010), Decision Analysis for Management Judgment (3rd ed), EN: John Wiley and Sons, Ltd.
- iv. Keeney, Ralph L., (1996). Value-Focused Thinking: A Path to Creative Decision Making. Elsevier Science B.V

Appendices

v. Kepner, C. H., & Tregoe, B. B. (2006). The new rational manager : an updated edition for a new world. Princeton Research Press.

Appendix 1: Existing Gas Production in PEP Zone 7

Appendix 2: Location of Bumi Hitam and Cililin Selatan Structure

Problem Statement: Undeveloped Hydrocarbon Potential from BMH Structure							
Specification	ls	Is Not	Distinction	Changes			
What Object	New Structure that has the potential amount of hydrocarbon	New Structure that does not have the potential amount of hydrocarbon	Gas volume in place and gas reserve	The volume of hydrocarbon is good but not as big as Subang or L-Parigi			
What deviation	The scenario to handle the produced fluid is not defined yet	The scenario to handle the produced fluid is defined yet	Still in progress to define the best scenario	Distance to the nearby facility is relatively far			
Where	BMH Structure	Other structure than BMH	Other structure with bigger potential is prioritized	Employee placement is unbalanced			
When	Before development phase	After development phase	Production activity within the phase	The development phase has production activity			
Extent	Achievement of gas production target of Pertamina EP	Achievement of gas production target other than Pertamina EP	Gas deliverability of each subsidiary of Pertamina Upstream Sub- holding	Gas deliverability of Pertamina EP Zone 7 cannot meet the target			

Appendix 3: KT Problem Analysis Worksheet

Appendix 4: Fishbone Diagram

Appendix 5: Illustration of Nearby Facilities

Appendix 6: Value-Focused Thinking (VFT) Process of BMH Development Scenario

Appendix 7: Three Scenarios to Develop BMH Structure

Appendix 8: Hierarchy Design

Appendix 9: Hierarchy Tree of Weighed of All Criteria/Sub-Criteria and Alternatives