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1. Introduction 
The study of women fecundability has controversially been adopted by different workers. The utility of the study depends upon 
the proper adoption of the fecundability of women. In most of the available literature, it is found that the fecaundability is 
assumed to be constant for all women [Singh (1964a), Pathak (1978)]. But in real life there are ample evidences that women vary 
in their fecundability. So, the fecundability may be thought of as a random variable {Henry (1995), Singh (1964)}. The present 
work deals with the same concept. Let us suppose that fecundability, say θ, follows distribution with p.d.f. g (θ). 
If T is waiting time for first conception can be treated as random variable which follows the distribution with p.d.f. f(x/θ) is 
regarded as a conditional p.d.f. of X for given θ where marginal probability density function of θ is given by g(θ) the study can be 
continued. 
 
2. The Continuous Fertility Model 
The geometric distribution is being considered as a discrete model for the waiting time first conception as developed by Gini 
(1924) the continuous model for the analysis of waiting time of first conception. The intuitive properties of exponential 
distribution also helped in such considerations. For such analysis Geometric distribution was replaced by the exponential 
distribution. Thus if x denotes the time of first conception, then its probability density function, say f(x;θ) is given by 

  (2.1.1) 
 
Where θ is instantaneous fecundability. 
The survival function, say S (x) is given by 

 

Or, 

 (2.1.2) 

And the conception rate, say w(x) will be  
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  (2.1.3)                                                                                     

3. Maximum Likelihood Estimator 

  (2.1.4) 

4. Bayesian Analysis of the Model 
The first conception of the family is also a part of the past family back ground; therefore Bayesian analysis of conception seems 
realistic on the basis of some history. In the some coming section the Bayesian analysis has been done for a continuous time 
model i.e. exponential distribution.  
We have 
 

 
 
Where θ is the instantaneous fecundibility. 
The fundamental problems in Bayesian Analysis are that of the choice of prior distribution g(θ) and a loss function L ( ). Let us 
consider three prior distribution of θ to obtain the Bayes estimators which are as follows:  
 
4.1. Quasi-Prior 
For the situation where the experimenter has no prior information about the parameter θ, one may use the quasi density ass given 
by  

 (2.1.5) 

Here d = 0 leads to a diffuse prior and d = 1, a non informative prior. 
 
4.2. Natural Conjugate Prior of θ 
The most widely used prior distribution of θ is the inverted gamma distribution with parameters α and β ( 0) with p.d.f. given by  
 

 (2.1.6) 

 The main reason for general acceptability is the mathematical tractability resulting from the fact that inverted gamma distribution 
is conjugate prior for θ. 
 
4.3. Uniform Prior 
It frequently happens that the life tester knows in advance that the probable values of θ lies over a finite range [α, β] but he does 
not have any strong opinion about any subset of values over this range. In such a case uniform distribution over [α, β] may be a 
good approximation. 
 

 (2.1.7) 
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5. Loss Function 
The Bayes estimator  of θ is of course, optimal relative to the loss function chosen. A commonly used loss function is the 
squared error loss function (SELF) 

 (2.1.8) 

Which is a symmetrical loss function and assigns equal losses to over estimation and underestimation. Canfield (1970) points out 
that the use of symmetric loss function may be inappropriate in the estimation of reliability function. Over estimation of reliability 
function or average lifetime is usually much more serious than under estimation of reliability function or mean failure time. Also, 
an under estimate of the failure rate results in more serious consequence than an overestimation of the failure rate. This leads to 
statistician to think about asymmetrical loss functions which have been proposed in statistical literature. It is well known that the 
Bayes estimator under the above loss function, say s, is the posterior mean. The squared error loss function (SELF) is often used 
also because it does not lead to extensive numerical computation but several authors {Ferguson (1967), Varian (1975), Berger 
(1980), Zellner (1986) and Basu and Ebrahimi (1991)} have recognized the inappropriateness of using symmetric loss function in 
several estimation problems. These have proposed different asymmetric loss function. 
 
5.1. Precautionary Loss Function 
Norstrom (1996) introduced an alternative asymmetric precautionary loss function and also presented a general class of 
precautionary loss function with quadratic loss function as a special case. These loss function approach infinitely near the origin to 
prevent underestimation and thus giving a conservative estimators, especially when low failure rates are being estimated. These 
estimators are very useful when under estimation may lead to serious consequences. A very useful and simple asymmetric 
precautionary loss function is  
 

  (2.1.9) 
 
The posterior expectation of loss function in (2.1.18) is  

  (2.1.10) 

The value of  that minimises (2.1.10), denoted by , Bayes estimater of θ under Precautionary loss function is obtained by  

solving the following equation 

  (2.1.11) 
 
6. Bays Estimator Under (θ) 
Under (θ), the posterior distribution is defined by 
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   (2.2.1) 

 Substituting the values of  from equations (2.1.9) and (2.1.7) in (2.2.1) we get, after simplification, as   

  (2.2.2) 

The Bayes estimator under squared error loss function is the posterior mean given by 

  (2.2.3)    

Substituting the values of f  from equation (2.2.2) in equation (2.2.3) and on solving we get 

  (2.2.4) 

The Bayes estimator under precautionary loss function, say  f  from equation (2.2.2) is the 
solution of equation (2.1.11) given by 

 

On simplification which leads to 

  (2.2.5) 
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7. Bayes Estimator Under  
 Under , the posterior distribution is defind by 

  (2.3.1) 

Substituting the values of  from equations (2.1.10) and (2.1.7) in (2.3.1) and simplifying, we get  

  (2.3.2) 

The Bayes estimator under squared error loss function is the posterior mean given by 

  (2.3.3) 

Substituting the values of f from equation (2.3.2) in equation (2.3.3) and on solving, we get 

 (2.3.4) 

The Bays estimator under precautionary loss function using the value of f from equation (2.3.2) is the solution of equation 
(2.1.11) given by 

 

which on simplification, leads to  

  (2.3.5)            
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8. Bayes Estimator Under  
 Under , the posterior distribution is defined by 

  (2.4.1.) 

Substituting the values of  from equations (2.1.11) and (2.1.7) in (2.4.1) we get, after simplifying, we get  

  (2.4.2) 

Where 
= dt is the incomplete gama function 

The Bayes estimator under squared error loss function is the posterior mean given by 
 

 (2.4.3) 

Substituting the values of f  from equation (2.4.2) in equation (2.4.3) , we get 

 

which on simplification leads to 

  (2.4.4) 

The Bayes estimator under precautionary loss function using the value of   from equation (2.4.2), is the solution of 
equation (2.1.11) given by 
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or,  (2.4.5) 

The equations (2.4.4) and  (2.4.5),  can be solved numerically. 
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