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1. Background of Study 
The basic responsibility of pension schemes is to pay benefits to pensioners. The pension system in Ghana prior to 

2004 was characterised with many problems which made the payment of the retirement benefit a failure in Ghana. The 
sustainability of a pension scheme needs to be looked at in terms of future burden of financing on all those working in the 
national economy in order to pay the promised benefits to those who are no longer working. 
A mix of statistical studies and experienced judgments is used to valuate pension schemes to ascertain its sustainability 
over time. Economic, demographic and actuarial assumptions are made in that regard to estimate these future liabilities. 
However, since assumptions are often derived from long-term data, unusual short- term uncertainties and unanticipated 
trends can sometimes cause problems. It is usually easy to value the assets of a social security scheme since it usually 
holds liquid securities such us stocks and bonds as compared to liabilities which can be very difficult to value. Aside the 
economic, demographic and actuarial assumptions, statistical analysis and some assumption must be made to determine 
the total value of pension benefits that must be paid out in the future. Secondly, an assumption must be made on the 
expected growth of the scheme’s assets which will allow it meet those obligations. There are (2) two measurement 
methods to determine the value of pay-outs that must be made in the future. Namely: 

 The Solvency Value- A Market-Based: Under this method, Measurement is based on the amount needed to fulfil all 
benefit obligations when invested in a portfolio of securities free of default risk whose cash flows match the future 
benefit payments. It is intended to fulfil the benefit obligation without additional funds. 

 The Budget Value- An Expected Return: For this method, Measurement is based on the anticipated amount that is 
expected to be sufficient to pay all benefits when due, thus, if that amount is invested and earns the anticipated 
return of the plan’s investment portfolio. When the portfolio is diversified and the return is uncertain, additional 
funds may be needed when the actual returns are less than the expected returns, and surplus assets may develop 
when the actual returns are greater than the expected return.      
However, there is no defined statistical method to predict or determine the future benefit payments. In Ghana, the 

Social Security and National Insurance Trust (SSNIT) is a statutory public Trust charged under the PNDC Law 247 and 
National Pensions Act 2008 Act 766 with the administration of Ghana’s Basic National Social Security Pension Scheme and 
to cater for the first tier of the contributory three-tier scheme in the Act 766. It operates the Defined Benefit type of 
pension compared with the Defined Contribution type which is managed by privately owned fund managers. The Trust is 
currently the largest non-bank financial institution in the country. 

The primary responsibility is to replace part of lost income of Ghanaian workers or their dependents The Pension 
Scheme as administered by SSNIT has a registered membership of approximately 1,307,882 million as at August 2017 with 

Alhaji Inusah Mahama 
Lecturer, Department of Statistics, Bolgatanga Polytechnic, Ghana  

Abstract: 
The role of insurance is to reimburse. Pension policies are instituted to secure the future income of individuals once they 
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to them from 2011 to 2017 was used for the study. Analysis revealed that, the number of Pensioners follows the Negative 
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candidate models and used for forecasting. Forecast for three years was done for both number of Pensioners and total 
monthly Payments. Both Forecasted values showed an increasing trend. 
 
Keywords: Queues, Queuing models, services 

http://www.theijhss.com


THE INTERNATIONAL JOURNAL OF HUMANITIES & SOCIAL STUDIES          ISSN 2321 - 9203     www.theijhss.com                

 
over 184,761 pensioners who regularly receive their monthly pensions from SSNIT. The annual absolute growth of 
pensioners is over 12,000. 

For the Scheme to adapt to a changing environmental and social landscape, to have good governance, and to 
manage risks effectively over both the short and long term, it has to accurately predict various aspects of its operations. 
Some of these areas include: the number of contributors, amount of revenue and expenditure, pensioners and its 
associated commitments etc. Not forgetting the economic and social indicators of the country at large. (www.ssnit.org.gh) 
 
2. Problem Statement 

The primary objective of a pension scheme is to pay benefits to its qualified members as and when the time is due 
and as such, there is the need for it to meet its current and future obligations. The literature reviewed on the current three-
tier pension scheme indicates that less attention has been given to the evaluation and the sustainability of the scheme in 
Ghana. There are numerous concerns that have been raised by public sector workers over the inadequacies inherent in the 
level of pension to sustain a respectable life for the aged upon retirement. Most workers highlighted the low pension 
received under the Social Security and National Insurance Trust (SSNIT) compared to workers under CAP 30 of the 1950 
British Colonial Ordinance (Pension Ordinance No.42) as discriminatory. It is usually easy to value the assets of a social 
security scheme since it usually holds liquid securities such us stocks and bonds as compared to liabilities which can be 
very difficult to value. In view of this, this study seeks to analyse and estimate the value of future liability of the scheme. 
Aside the economic, demographic and actuarial assumptions, statistical analysis and some assumption must be made to 
determine the total value of pension benefits that must be paid out in the future. Secondly, an assumption must be made 
on the expected growth of the scheme’s assets which will allow it meet those obligations. 
 
 3. Research Objectives 

 To determine the distribution of the number of benefits that is paid on old age pension. 
 To determine the distribution of the amount of benefits paid to old age pensioners. 
 To estimate the parameters: the number of old age pensioners and the amount of benefit. 

3.1. Research Method 
 

3.1.1. Data Source 
 The study made use of secondary data in gathering information. This data was retrieved from the SSNIT head 
office in Accra. 
 
3.2. Methods of Data Analysis 
 The study was done on old age pension benefits of Social Security and National Insurance Trust (SSNIT) in 
Ghana. The number of members of the scheme who are under this benefit scheme and the total amounts that are being 
paid to this category of people will analysed and also determine the distribution that best fits. This will bring additional 
knowledge/ understanding/biases based on the distribution assumptions. The number of people who receives these 
benefits will follow a discrete distribution whiles the amount of benefits that are being paid will follow a continuous 
distribution. Examples of the discrete and continuous distributions that these are likely to follow are discussed below 
respectively.     
 
3.2.1. Poison Distribution 

Poison distribution in statistics is a distribution function useful for characterizing events with very low 
probabilities of occurrence within some definite time or space. It is used to model the number of events occurring within a 
given time interval. A random variable X is said to be a Poisson random variable with parameter λ >0 if its probability mass 

function has the form 
 

(݇)݌ = ݁ିఒ ఒ
ೖ

௞!
,      k=0, 1, 2, ….                                        (3.1)  

Where λ indicates the average number of successes per unit time or space. 

Let X be a binomial random variable with parameters n and p. If n → ∞ and p → 0 so that np= λ = E(X) remains constant 
then X can be approximated by a Poisson distribution with parameter λ. 
 
3.2.2. Negative Binomial Distribution 

In probability theory and statistics, the negative binomial distribution is a discrete probability distribution of the 
number of successes in a sequence of independent and identically distributed Bernoulli trials before a specified (non-
random) number of failures (denoted r) occurs. For example, if we define a 1 as failure, all non-1s as successes, and we 
throw a die repeatedly until 1 appears the third time (r = three failures), then the probability distribution of the number of 
non-1s that appeared will be a negative binomial distribution. 
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3.3. Exponential Distribution 
 In probability theory and statistics, exponential distribution (also known as negative exponential distribution) is 
the probability distribution that describes the time between events in a poison point process, i.e., a process in which 
events occur continuously and independently at a constant average rate (en.m.wikipedia.org). 
An exponential random variable with parameter λ >0 is a random variable with pdf 

       
F(X) = 1 − e−λx, x >0.     

                           (3.2) 
 

 

. 
Exponential random variables are often used to model arrival times, waiting times, and equipment failure times. 

The moment generating function of an exponential distribution with parameter λ is given by 

.                                           (3.3) 
 
3.4. Log Normal Distribution 

A lognormal (log-normal or Galton) distribution is a probability distribution with a normally distributed 
logarithm. A random variable is log normally distributed if its logarithm is normally distributed. Skewed distributions with 
low mean values, large variance, and all-positive values often fit this type of distribution. Values must be positive as log(x) 
exists only for positive values of x. 
The probability density function is defined by the mean μ and distributions with low mean values, large variance, and all-
positive values often fit this type of distribution. Values must be positive as log(x) exists only for positive values of x. 
The probability density function is defined by the mean μ and standard deviation, σ: 
;ݔ݈݊)ࣨ ,ߤ ଵ = (ߪ

ఙ√ଶగ
expቂ− (௟௡௫ି ఓ)మ

ଶఙమ
ቃ, x > 0.                                                         (3.4) 

The shape of the lognormal distribution is defined by three parameters: σ, the shape  
Parameter. Also, the standard deviation for the lognormal, this affects the general shape of the distribution. Usually, these 
parameters are known from historical data. Sometimes, you might be able to estimate it with current data. The shape 
parameter doesn’t change the location or height of the graph; it just affects the overall shape. m, the scale parameter (this 
is also the median). This parameter shrinks or stretches the graph. Θ (or μ), the location parameter, which tells you where 
on the x-axis the graph is located. 
 
3.5. Characteristics of Lognormal Distribution 

 It is skewed to the right 
 The pdf starts at zero, increases to its mode, and decreases thereafter. 
 The degree of Skewness increases as ߪ′ increases, for a given ߤ′ 

After analysing the distributions, another statistical tool (Trend Analysis) will also be used to forecast the number 
of people likely to go on pension and the total future liabilities. 

3.6. Trend Analysis 
 Trend analysis refers to techniques for extracting an underlying pattern of behaviour in time series. The trend may be 
linear, quadratic or exponential in nature. From Minitab, the trend equations are given as follows; 

 
௧ܻ = ଴ߚ + ݐଵߚ + ௧ߝ                                                                             (3.5) Linear Trend Model 
௧ܻ = ଴ߚ + ݐଵߚ + ଶݐଶߚ + ௧ߝ                                                               (3.6) Quadratic Trend Model                                                          

Y=ߚ଴ × ௧ଵߚ × ௧ߝ                                                                                  (3.7) Exponential Trend Model 
Where; 
Y= dependent variable, ߚ଴= intercept or coefficient, ߚଵ,  ଶ= independent variables, ε = error termߚ
t = index of time period 
The trend with the minimum mean absolute percentage error (MAPE), Mean absolute deviation (MAD) and Mean squared 
Deviation (MSD) is the best trend for the series. To be able to come up with an adequate model and also to make accurate 
forecast, the concept of time series will also be employed. 
 
3.7. Differencing 
 A time series that is non-stationary can be made stationary by taking the first-difference. The first-difference is simply 
the difference of the value of the series at times t and t – 1 
 ௧ିଵݔ − ௧ݔ = ௧ݕ
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Where ݔ௧ is the original time series and ݕ௧ is the first-differenced series. The number of observations in the differenced 
series ݕ௧ would be one less than the number of observations in the original series. But if the series is also not stationary in 
the rate of change of the mean (i.e. slope); stationary can be achieved by taking the second difference. 
 
3.8. Stationarity and Non-Stationarity 
       Stationary series vary around a constant mean level, neither decreasing nor increasing systematically over time, 
with constant variance. Non-stationary series have systematic trends, such as linear, quadratic, and so on. A non-stationary 
series that can be made stationary by differencing is called “non-stationary in the homogenous sense”.  
        Stationary is used as a tool in time series analysis, where the raw data are often transformed to become stationary. 
For example, economic data are often seasonal or dependant on a non-stationary price level. Using non-stationary time 
series produces unreliable and spurious results and leads to poor understanding and forecasting. The solution to the 
problem is to transform the time series data so that it becomes stationary. If the non-stationary process is a random walk 
with or without a drift, it is transformed to stationary process by differencing. Differencing the scores is the easiest way to 
make anon-stationary mean stationary (flat). The number of times you have to difference the scores to make the process 
stationary determines the value of d. If d = 0, the model is already stationary and has no trend. When the series is 
differenced once, d=1 and linear trend is removed. When the difference is then differenced, d =2 and both linear and 
quadratic trend are removed. For non-stationary series, d values of 1 or 2 are usually adequate to make the mean 
stationary. If the time series data analysed exhibits a deterministic trend, the spurious results can be avoided by detruding. 
Sometimes the non-stationary series may combine a stochastic and deterministic trend at the same time and to avoid 
obtaining misleading results both differencing and detrending should be applied, as differencing will remove the trend in 
the variance and detrending will remove the deterministic trend.  
  A non-stationary process with a deterministic trend becomes stationary after removing the trend, or detrending. 
For example, ௧ܻ = α + ߚ௧+ ߝ௧is transformed into a stationary process by subtracting the trendߚ௧: ௧ܻ - ߚ௧ = α +ߝ௧ . No 
observation is lost when detrending is used to transform a non-stationary process to a stationary one. Non-stationary data, 
as a rule, are unpredictable and cannot be modelled or forecasted. The results obtained by using non-stationary time series 
may be spurious in that they may indicate a relationship between two variables where one does not exist. In order to 
receive consistent, reliable results, the non-stationary data needs to be transformed into stationary data. In contrast to the 
non-stationary process that has a variable variance and a mean that does not remain near, or returns to a long-run mean 
over time, the stationary process reverts around a constant long-term mean and has a constant variance independent of 
time. 
 
3.9. Autocorrelation Function (ACF) 
 Autocorrelation is the correlation that exists between successive values of the same variables. Autocorrelation refers 
to the correlation of a time series with its own past and future values. Autocorrelation is also called “lagged correlation” or 
“serial correlation”, which refers to the correlation between members of a series of numbers arranged in time. Positive 
autocorrelation might be considered a specific form of “persistence”, a tendency for a system to remain in the same state 
from one observation to the next. For example, the likelihood of tomorrow being rainy than if today is dry. Autocorrelation 
complicates the application of statistical tests by reducing the number of independent observations. Autocorrelation can 
also complicate the identification of significant covariance or correlation between time series. Autocorrelation can be 
exploited for predictions: an auto correlated time series is predictable, probabilistically, because future values depend on 
current and past values.  Three tools for assessing the autocorrelation of a time series are; 

 The time series plot 
 The lagged scatter plots 
 The autocorrelation functions  

An important guide to the persistence in a time series is given by the series of quantities called the sample autocorrelation 
coefficients, which measure the correlation between observations at different times. The set of autocorrelation coefficients 
arranged as a function of the separation in time is the sample autocorrelation function. The first-order autocorrelation 
coefficient is the sample coefficient of the first N 1 observations, t=1,2,…,N 1 and the next N 1 observations, t=2,3,…,N. 
The correlation is given by     
௞ߩ = Є{(௬೟ିఓ)(௬೟శೖିఓ)}

ఢ{(௬೟ିఓ)మ}
= ఊ(௞)

ఊ(଴)
                                                                                                                         (3.8) 

 
The quantity is called the autocorrelation coefficient at lag k. the collection of the values of ߩ௞ for k = 0, 1, 2… is referred to 
as the autocorrelation function (ACF). 
The plot of the autocorrelation function of the lag is also called the correlogram. The autocorrelation function can be used 
for the following two purposes; 

 To detect non-randomness in data 
 To identify an appropriate time series model if the data are not random. 

 
3.10. Partial Autocorrelation Function 
 Partial autocorrelation function gives the partial correlation of time series with its own lagged values, controlling for 
the values of the time series at all shorter lags. It contrasts with the autocorrelation function, which does not control for 
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other lags. The partial autocorrelation function (PACF) denoted by the set of partial autocorrelations at various lags k are 
defined by (k=1, 2, 3…). The set of partial autocorrelations at various lags k are defined by; 

௞ߨ =
ఘೖି∑ (గೖషభ,ೕ)ೖషభ

ೕసభ

ଵି∑ ൫గೖషభ,ೕ൯(ఘೖషೕ)ೖషభ
ೕషభ

, ݇ > 1, ݆ = 1,2,3, … , ݇ − 1                                                                               (3.9) 

Partial autocorrelation function plays an essential role in data analyses aimed at identifying the extent of the lag in an 
autoregressive model. The partial autocorrelation of an AR(ρ) process is zero at lag ρ+ 1 and greater. The approximate 95% 
confidence interval for the partial autocorrelations is at ± ଵ.ଽ଺

√௡
 or ± ଶ

√௡
 where n is the record length (number of points) of the 

time series being analyzed. 
 
3.11. Arima Model 
 ARIMA under time series analysis is an autoregressive integrated moving average model which is a generalization of an 
autoregressive moving average (ARMA) model. These models are fitted to time series data either to better understand the 
data or to predict future points in the series (forecasting). They are also applied in some cases where data depicts evidence 
of non-stationary, where an initial differencing steps (corresponding to the “integrated” part of the model) can be applied or 
introduced non-stationary. Non-seasonal ARIMA models are generally denoted by ARIMA (ρ, d, q) where the parameters ρ, d, 
and q are non-negative integers, p is the order of the autoregressive model, d is the degree of differencing, and q is the order 
of the moving average model. The process should be stationary after differencing a non-seasonal process d time. The ARIMA 
(ρ, d, q) is given by; 
(1 − ௧ݕௗ(ܤ = ߮଴ +߮ଵݕ௧ିଵ + ߮ଶݕ௧ିଶ + ⋯+ ௣߮ݕ௧ି௣ + ௧ߝ + ௧ିଵߝଵߠ + ௧ିଶߝଶߠ + ⋯+ ௧ି௤ߝ௤ߠ      (3.10)                              
 
In terms of the backward shift operator, the model can be written as 
 
(1 − ߚଵߤ − ଶߚଶߤ + ⋯+  ௣)                                                                                                                       (3.11a)ߚ௣ߤ
 
(1 − ௧ݕௗ(ܤ = (1 + ߚଵߠ + ଶߚଶߠ + ଷߚଷߠ + ⋯+ ௧ߝ(௤ߚ௤ߠ                                                                          (3.11b)                                                                              
 
3.12. SARIMA Model 
 The seasonal ARIMA model is a general class of models used to forecast a time series entirely from its own history. The 
model uses autoregressive terms and moving average terms to factor in the seasonality of the data trend and differences 
from time period to time period when making a prediction. This implies that, the SARIMA model extends the ARIMA model 
to capture seasonal and non-seasonal behaviour. The model is usually written as ARIMA (ρ, d, q) × (P, D, Q) where; p, d, q   
are the orders of non-seasonal AR, differencing and MA respectively.   P, D, Q   is the orders of seasonal AR, differencing and 
MA respectively and s represents the seasonal order.  
 
3.13. Model Selection 
 When fitting models, there is the tendency of two or more models competing and for that reason it is appropriate to use 
a good model selection criterion to select the most adequate model. The possible models are determined based on the data 
pattern. In this study, AIC and BIC were the measures of the goodness-of-fit that were employed to select the most adequate 
model. For a given data set, several competing models may be ranked according to their AIC and BIC values with the one 
having the lowest information criterion value being the best. These information criterion attempts to find the model that 
best explains the data with the minimum of free parameters but also includes a penalty that is an increasing function of the 
number of estimated parameters. This penalty discourages over fitting (Aidoo, 2010). The following criterions are given as; 
 
AIC = 2k 2log L                                                               
OR 
AIC = 2k + nlog(ோௌௌ

௡
)                                                                                                                                               (3.12) 

AIܥ஼ = ܥܫܣ + ଶ௄(௄ାଵ)
௡ି௞ିଵ

 
BIC = 2log L + klogn                                                    
where 
K: is the number of parameters in the statistical model. 
L: is the maximized value of the likelihood function for the estimated model. 
RSS: is the residual sum of square of the estimated model. 
n: is the number of observation or the sample size 
The AIܥ௖  is a modification of the AIC by Hurvich and Tsai (1989) and it is AIC with the second order of correction for small 
sample sizes. Burnham & Anderson (1998) insist that since AIܥ௖  converges to AIC as n gets large, AIܥ௖   should be employed 
regardless of the sample size (n).  
 
3.14. Model Diagnostics (Goodness of Fit) 
 Ideally, a model should extract all systematic information from the data. The part of the data unexplained by the model 
(that is the residuals) should be small. The diagnostics check is used to determine the adequacy of the chosen model. These 
checks are usually based on the residuals of the models. One assumption of ARIMA (p, d, q) is that, the residuals of the model 
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should be white noise. A series {ߝ௧} is said to be white noise if {ߝ௧}  is a sequence of independent and identically distributed 
random variable with constant mean usually assumed to be zero and constant variance.   
 Also, if {ߝ௧} is normally distributed with mean zero and variance ߪఌଶ, then ߪఌଶ is called a Gaussian White noise. For a 
white noise series, all the ACF are zero. In practice, if the residuals of the model are white noise, then the ACF of the residuals 
are approximately zero. In order to use the developed model to draw any meaningful conclusion, a statistical tool such as 
Ljung-Box Q statistic can be used to determining whether the series is independent or not (Smart, 2013).  
 
3.15. Ljung-Box Test 
 The Ljung box test is used to test for serial correlation in the residuals of the model. The hypothesis to be tested is given 
by:  
  .଴ :  There is no serial correlation in the residuals of the modelܪ
    .ଵ :  There is serial correlation in the residuals of the modelܪ
The test statistic is given by;  
ܳ௠ = ܶ(ܶ + 2)∑ (ܶ − ௞ଶ௠ߛଵି(ܭ

௞ୀଵ                                                                                                               (3.13) 
where 
γ:  is the sample autocorrelation at lag k  
T:  is the number of observations  
K:  is the lag  
When the p-value associated with is large, the model is considered adequate.  
 
3.16. Arch-Lm Test 
 The ARCH-LM test is used to test for conditional variance or heteroscedasticity in the model residual. The hypothesis is 
given by:  

 H଴ :  There is no conditional heteroscedasticity in the residuals of the model.  
 Hଵ:  There is conditional heteroscedasticity in the residuals of the model.  

The test statistic is given by:  
LM = Tܴଶ                                                                                                                                                                 (3.14) 
T:  is the number of observations  
ܴଶ : is the coefficient of determination computed from the auxiliary residual regression. 
 
3.17. Forecasting 
 After a model has passed the entire diagnostic test, it becomes adequate for forecasting. The ARIMA model as 
described by several researchers has proven to perform well in terms of forecasting as compared to other complex models. 
To choose a final model for forecasting, the accuracy of the model must be higher than that of all the competing models. 
Forecasting with this system is straight forward with the expected forecast value evaluated at a particular point in time. 
Confidence intervals may also be easily derived from the standard error of the residuals. 
 
3.18. Statistical Software Appropriate for the Analysis 

 Easyfit software was used to run all the distributions to know the one that best fit. 
 Mnitab was also used for the preliminary analysis, trend analysis and normality test.  
 The R studio statistical software was also used in the analysis, ACF and PACF, time series graph, fitting ARIMA 

models and forecasting. 
 
4. Results and Discussions 

 
4.1. Best Fit Distribution Results for Number of Pensioners 

 
# Distribution Kolmogorov 

Smirnov 

Anderson 
Darling 

Statistic Rank Statistic Rank 
1 D. Uniform 0.12241 2 19.668 3 
2 Geometric  0.53793 3 26.596 4 
3 Logarithmic  0.83414 5 85.018 5 
4 Neg. Binomial 0.11644 1 2.2494 2 
5 Poisson 0.54762 4 -29.951 1 
6 Bernoulli No fit (data max > 1) 
7 Binomial No fit 
8 Hypergeometric No fit 

Table 1: Goodness of Fit – Summary 
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Table 2:  Goodness of fit details 

 
From table 4.1, Negative Binomial ranked first and second in Kolmogorov Smirnov and Anderson Darling test of 

best fit respectively. Hence, it is the distribution that best fits the data. 
Table 2 Goodness of fit details 

From Table 2 above, the Kolmogorov-Smirnov test revealed that, the data should be rejected only at confidence 
level of 80% but should not be rejected at 90, 95, 98 and 99 percent confidence level. Also, the Anderson-Darling test also 
revealed that, it should be rejected at 80% and 90% confidence level but should not be rejected at 95, 98 and 99 percent 
level of confidence. Below is diagram of the probability density function (Negative Binomial) of the data.  
Figure 4.1 Negative Binomial Distribution 
 
4.2. Descriptive Statistics for Number of Pensioners at SSNIT 
 

Statistic Value Percentile Value 
Sample Size 84.00 Min 108730.00 

Range 80815.00 5% 110130.00 
Mean 140840.00 10% 112520.00 

Variance 602490000.00 25% (Q1) 118890.00 

Std. Deviation 24546.00 50% (Median) 134800.00 
Coef. of Variation 0.17 75% (Q3) 160280.00 

Std. Error 2678.10 90% 178210.00 
Skewness 0.46 95% 184760.00 

Excess Kurtosis -1.07 Max 189550.00 
Table 3: Descriptive Statistics of Responses 

 
4.3. Results Discussion 

Table 2 revealed that, the best statistical distribution that best fits the data (Number of pensioners) is Negative 
Binomial Distribution. Generally, Negative Binomial Distribution is a discrete probability Distribution of the number of 
successes in a sequence of independent and identically distributed Bernoulli trials before a specified number of failures 
occurs. Relating this to the data, the success is the number of people who will go on pension out of the total number of 
contributors of the SSNIT pension scheme in each month and the failure is the number of people who do not qualify for old 
age pension. 

Also, this distribution is rightly skewed. This means that, for most months the number of pensioners on the 
scheme is less than the mean, since in a rightly skewed distribution of a data, the mode and the median is always less than 
the mean (average), nonetheless, there are still some small extreme values which are greater than the mean for some few 
months.   

From the descriptive statistics of the number of pensioners at SSNIT from 2011 to 2017, It could be observed that, 
the minimum number of pensioners was 108730 and the maximum was 189550. This means that, the number of people 
on pension at SSNIT each month ranges from 108730 to 189550. It appears that, the average number of pensioners each 
month is 140840 which implies that the least expected number of people who will be on pension is 140840 with Median 
134800 depicting that at SSNIT, the number of people likely to be on pension is more or less than 134800. 
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4.3.1. Best Fit Distribution for Total Monthly Payment to Pensioners at SSNIT (Continuous) 

Analysis revealed that, Lognormal (3P) distribution ranked best as compared to the other continuous statistical 
distribution for the Kolmogorov Smirnov, Anderson Darling and Chi-Square test of fit.  
 
4.3.2. Parameters of the Lognormal (3p) Distribution 

 
Distribution Shape Location Scale 

Lognormal σ = 1.2921 µ = 16.899 ᵞ = 1.6781E+7 
Table 4:  Parameters 

 
4.3.3. Goodness of Fit Results of Lognormal (3p) 

 
Kolmogorov-Smirnov 

Sample Size 
Statistic 
P-Value 

Rank 

84 
0.11948 
0.16747 

5 
� 0.2 0.1 0.05 0.02 0.01 

Critical Value 0.11508 0.13148 0.14605 0.16331 0.17523 
Reject? Yes No No No No 

Anderson-Darling 
Sample Size 

Statistic 
Rank 

84 
2.1619 

12 
� 0.2 0.1 0.05 0.02 0.01 

Critical Value 1.3749 1.9286 2.5018 3.2892 3.9074 
Reject? Yes Yes No No No 

Chi-Squared 
Deg. of freedom 

Statistic 
P-Value 

Rank 

5 
4.7803 

0.44327 
5 

� 0.2 0.1 0.05 0.02 0.01 
Critical Value 7.2893 9.2364 11.07 13.388 15.086 

Table 5:  Goodness of Fit 
 

From the goodness of fit table above, the Kolmogorov-Smirnov test revealed that, the data should be rejected only 
at confidence level of 80% but should not be rejected at 90, 95, 98 and 99 percent confidence level. Also, the Anderson-
Darling test also revealed that, it should be rejected at 80% and 90% confidence level but should not be rejected at 95, 98 
and 99 percent level of confidence. Nonetheless, the Chi-Square showed that it should not be rejected for all 80%, 90%, 
95%, 98% and 99% level of confidence. 

 

 
Figure 1: Probability Density Function for Lognormal Distribution 
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4.4 Descriptive Statistics for Total Monthly Pension Payments 

 
Statistic Value Percentile Value 

Sample Size 84.00 Min 18312435 
Range 107210000.00 5% 18527000.00 
Mean 56877047 10% 19150000.00 

Variance 1265486000000000.00 25% (Q1) 24770000.00 

Std. Deviation 35574000.00 50% (Median) 47957000.00 
Coef. of Variation 0.63 75% (Q3) 92083000.00 

Std. Error 3881400.00 90% 116700000.00 
Skewness 0.65 95% 122300000.00 

Excess Kurtosis -1.01 Max 125521739 
Table 6:  Descriptive Statistics 

 
4.5. Discussion of Results 
  Table 4 revealed that, the Lognormal (3P) Distribution is the best fitted distribution for the data. Generally, a 
Lognormal distribution results if the variable is the product of a large number of independent, identically distributed 
variables. From the diagram (Figure 1), it can be observed that the data is rightly Skewed. This implies that the amount 
paid to pensioners is fairly symmetrical and values extend towards more positive values, meaning the data of amount paid 
to pensioners has small values and few large values. 
 From Table 5 it could be observed that, the minimum amount paid out was GHC 18,312,435 and the maximum was 
GHC 125,521,739. This means that, the amount paid by SSNIT to pensioners each month ranges from GHC 18,312,435 to 
GHC 125,521,739. It appears that, the average amount paid each month is GHC 56,877,047 which imply that the least 
expected amount to be paid is GHC 56,877,047 with Median GHC 47957000.00 depicting that at SSNIT, the amount likely 
to be paid to pensioners is more or less than GHC 47957000.00. 
 
4.6. Trend Analysis 

This shows the models that will best suit the number of pensioners and the amount paid by studying the measures 
of accuracy of the linear, exponential and quadratic models. 

 
Model MAPE MAD MSD 
Linear 3 4122 21822006 

Quadratic* 1* 978* 1576231* 
Exponential Growth 2 2641 9157702 

Table 7: Measure of Accuracy for Number of Pensioners 
NB: * Implies Best Model 

 

 
Figure 2: Trend analysis of number of pensioners 
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Model MAPE MAD MSD 
Linear 2.61607E+01 9.42682E+06 1.92328E+14 

Quadratic* 1.39388E+01* 5.39635E+06* 1.18262E+14* 
Exponential Growth 1.43454E+01 6.22903E+06 1.20400E+14 

Table 8: Measure of Accuracy for Total Amount Paid 
NB: * Implies Best Model 

 

 
Figure 3: Trend Analysis of Total Monthly Payments 

 
From Tables 4.6 and 4.7, it can be observed that the quadratic trend has the least Mean Absolute Percentage Error 

(MAPE) of 1 and 1.39388E+01 respectively, Mean Absolute Deviation (MAD) of 978 and 9.42682E+06 respectively and 
Mean Square Deviation (MSD) of 1576231 and1.18262E+14 for number of Pensioners and amount paid respectively. This 
implies that, the data follows a quadratic trend. Therefore, the fitted models for number of pensioners and total monthly 
payments are given respectively as 4.1 and 4.2 below; 
Yt = 109031 + 266.3t + 8.559t2                      (4.1) 
Yt = 19805361 – 49887t + 16370t2      (4.2) 
 
4.6.1. Time Series Plot of Raw Data of the Number of Pensioners  
 

 
Figure 4:  Plot for Number of Pensioners 

 
The plot in figure 4.8.1 above is plot of the number of pensioners in SSNIT from 2011 to 2017. The plot shows an 

increasing trend in the number of pensions on the scheme. By default, one would expect that this data is not stationary and 
involves no seasonality by a mere pictorial inspection of the graphs, but there is the need to perform further test to really 
ascertain whether the data is stationary or non-stationary.  
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4.6.2. Test for Stationarity of the Raw Data 

 
 ADF Test (*) KPSS Test (**) 

Test Statistic -1.2764 2.819 
P-value 0.8727 0.01 

Stationary? NO NO 
(a); H0: The data is non-stationary 

(b); H0: The data is stationary 
Table 9: Stationarity Test 

 
Table 8above reveals that the raw data on number of pensioners at SSNIT is not naturally stationary by default. 

Hence the data requires differencing in order to make it stationary. 
 
4.6.3. Finding the First Difference of Raw Data and testing for stationarity  
 

 
Figure 5: Plot of first difference 

 
It will be difficult to really tell if the graph shown in Figure 5 is stationary or not. It possesses characteristics of 

possible stationarity and non-stationarity as the values seem to be distributed around zero, suggesting the possibility of 
them having a zero mean but some unusual spikes detected in the left tail also suggest possible non-stationarity. For this 
reason, further test needs to be performed at this point also to check for stationarity in the first difference.  
 
4.6.4. Test for Stationarity of the First Difference (Number of Pensioners) 

 
Test type ADF Test (*) KPSS Test (**) 

Test Statistic -5.493 0.7658 
P-value 0.01 0.1 

Stationary? YES NO 
*; H0: The data is non-stationary 

**; H0: The data is stationary 
Table 10: Test for Stationarity 

 
The results from table 4.8.4 shows conflicting responses from the ADF test and the KPSS test. The ADF test, we test 

the null hypothesis that the first differenced series is non-stationary. The table shows a test-statistics of -5.493 and a p-
value of 0.01 which is less than the alpha value (α) of 0.05. This tells us to fail to reject the alternative hypothesis at 5% 
significance level; hence the differenced series is stationary.  But the KPSS test v rather reports the presence of non-
stationarity in the first difference, hence there is the need to take the second difference of the data until the two tests of 
stationarity agree. 
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4.6.5 Finding the Second Difference of Raw Data and Testing for Stationarity 
 

 
Figure 6: Plots for Second Difference 

 
At this point in Figure 4.8.5, one can suspect stationarity since the values seem to be grouped around zero. Higher 

spikes are accompanied by other higher spikes in the opposite direction which stands to cancel themselves. However, 
results from further empirical stationarity tests will prove or disprove this fact. 
 
4.6.6. Test For Stationarity of The Second Difference (Number of Pensioners) 
 
 

Test type ADF Test (*) KPSS Test (**) 
Test Statistic -7.4405 0.017245 

P-value 0.01 0.1 
Stationary? YES YES 

*; H0: The data is non-stationary 
**; H0: The data is stationary 

Table 11: Stationarity Test 
 

This time in table 4.11, the two stationarity tests agree as they all reveals stationarity in the second difference. 
Hence, the second difference of the data on number pensioners at SSNIT is to be worked with.  
 
4.7. Model Selection 

 
ARIMA MODEL AIC AICc BIC 
ARIMA (1,2,0) 1448.17 1448.32 1452.98 
ARIMA (1,2,1) 1412.82 1413.12 1420.04 
ARIMA (2,2,0) 1441.85 1442.16 1449.07 
ARIMA (2,2,1) 1412.7 1413.22 1422.33 
ARIMA (3,2,0) 1433.61 1434.13 1443.24 
ARIMA (3,2,1) 1410.7 1411.49 1422.73 
ARIMA (4,2,0) 1426.39 1427.18 1438.42 
ARIMA (4,2,1) 1411.55 1412.67 1425.99 
ARIMA (6,2,0) 1421.53 1423.04 1438.37 
ARIMA (6,2,1) 1414.8 1416.77 1434.05 

Table 12: Arima Models 
 

Table 12reports the ARIMA (3,2,1) to be the best model for forecasting the number of pensioners at SSNIT since it 
recorded the smallest AIC, AICc and BIC values. 
 
4.7.1. Model Diagnostics (Ljung-Box and Arch-Lm Test) 

Ljung-Box test is performed to determine whether there is serial correlation in the residual of the model. Also, 
ARCH-LM test is performed to prove heteroscedasticity in the residual of the model. 

 
 
 
 

 

http://www.theijhss.com


THE INTERNATIONAL JOURNAL OF HUMANITIES & SOCIAL STUDIES          ISSN 2321 - 9203     www.theijhss.com                

 

320  Vol 7  Issue 12                   DOI No.: 10.24940/theijhss/2019/v7/i12/HS1912-002             December, 2019               
 

 

Test Lag Test Statistic P- Value 
L-Jung Box 1 0.2432 0.6219 
L-Jung Box 4 2.3278 0.6757 
ARCH-LM 4 0.488 0.9747 
ARCH-LM 8 1.346 0.995 

Table 13:  Parameters 
 

Table 13, shows that the p-values of the Ljung Box test at both lags 1 and 4 are greater than alpha (α) value of 
0.05. The Ljung box test was used to test the null hypothesis of absence of serial correlation in the residual of the model. 
Now since all the p-value is greater than the alpha value of 0.05, we fail to reject the null hypothesis and conclude that 
there is no serial correlation in the residuals of the model. Hence the model is adequate. 
Also, the ARCH-LM test was used to test for the heteroscedasticity in the residual of the model. Now, since it has p-values 
at both lags 4 and 8 which are higher than the alpha (α) value of 0.05, we fail to reject the null hypothesis and conclude 
that there is no heteroscedasticity in the residual of the model. Hence the model is adequate. 
 
4.7.2. Forecasting with ARIMA (3,2,1) 

Now the suitable model (ARIMA (3, 2, 1)) that fits the data has been identified and has passed through the 
necessary model test, the next thing will be to forecast to see how future trend of the number of pensioners will be like. 
The model was then used to forecast for monthly number of pensioners for the next three years of SSNIT as shown in the 
table below. 

 

Table 14: Forecasted Values for Number of Pensioners 
The Table Above Shows the Point Forecasts of the Number of Pensioners at SSNIT for the Next 24 Months 

 

  80% Confidence level 90% Confidence level 
Month Point Forecast Low High Low High 
Jan-19 207371.9 201232 213511.7 197982 216762 
Feb-19 208723.6 202180 215267.3 198716 218731.3 
Mar-19 210075.5 203120 217030.7 199438 220712.5 
Apr-19 211428.2 204054 218802.3 200151 222705.8 
May-19 212781.1 204981 220580.9 200852 224709.8 
Jun-19 214133.7 205901 222365.9 201544 226723.8 
Jul-19 215486.1 206815 224157.6 202224 228748.1 

Aug-19 216838.6 207721 225956.2 202895 230782.8 
Sep-19 218191.2 208621 227761.6 203555 232827.9 
Oct-19 219543.8 209514 229573.7 204204 234883.2 
Nov-19 220896.3 210400 231392.3 204844 236948.5 
Dec-19 222248.9 211280 233217.4 205474 239023.7 
Jan-20 223601.4 212154 235048.9 206094 241108.8 
Feb-20 224954 213021 236886.8 206704 243203.7 
Mar-20 226306.6 213882 238731 207305 245308.2 
Apr-20 227659.1 214737 240581.5 207896 247422.2 
May-20 229011.7 215585 242438.1 208478 249545.7 
Jun-20 230364.2 216428 244300.9 209050 251678.5 
Jul-20 231716.8 217264 246169.7 209613 253820.6 

Aug-20 233069.3 218094 248044.5 210167 255971.9 
Sep-20 234421.9 218919 249925.2 210712 258132.2 
Oct-20 235774.5 219737 251811.8 211247 260301.5 
Nov-20 237127 220550 253704.2 211774 262479.7 
Dec-20 238479.6 221357 255602.4 212293 264666.6 
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Figure 7: Graph 0f Forecast Values (No of Pensioners) 

 
The forecast graph in Figure 9 shows the number of pensioners at SSNIT is going to increase from month to month 

for the next 36 months as it is already the case in the original data. 
 
4.8. Model Selection Process (For total Amount) 

 
Figure 8:  Time Series Plot of Raw Data for Monthly Payment 

 
Figure 8 shows the time series plot of the raw data for monthly pension total amounts. The raw data does not 

show any seasonality in the data. The plot generally shows an increasing trend and by default one can suspect that there is 
no stationarity in the data. However, in order to be firm on the fact that there is no stationarity, there is the need to 
perform further empirical test. 
 
4.8.1. Unit Root and Stationarity Test 

This test is performed to further prove the stationarity of the data. It is achieved by testing for the Augmented 
Dickey-Fuller (ADF) and Kwiatkowski-Philips-Schmidt-Shin (KPSS). 
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4.8.2. Test for Stationarity in the Raw Data for Total Monthly Pension Payments 

 
 
 
 
 
 
 
 
 
 
 

Table 15: Test for Stationary on Raw Data (Pension Total) 
 

From Table 15, using the ADF test, we test the null hypothesis that the original series is non-stationary against the 
alternative of stationary. The test results show a test statistic of -2.8454 and p-value of 0.2291. Since the P-value is more 
than the alpha value (α) of 0.05. We therefore fail to reject the null hypothesis which states that the original series is non-
stationary. 

Also using the KPSS test, we test the null hypothesis that the original series is stationary against the alternative of 
non-stationary. The results depict a test statistic of 2.5524 and a p-value of 0.01. Since the p-value is less than the alpha 
value of 0.05, we fail to reject the alternative hypothesis which shows non-stationary in the original series. 
The above reveals by empirical test that the data at this stage is not stationary by default. Hence, there is the need to 
difference the data. 
 
4.8.3. Taking the First Difference of the Original Data and Testing for Stationarity 

 

 
Figure 9:  Plot for First Difference 

 
From Figure 9, one can now begin to suspect stationarity in the first non-seasonal difference of the data. However, 

some long spikes are seen towards the right end of the plot which rather suggest possible non-stationarity even in the first 
difference. Hence, at this stage, there is the need to perform stationarity test on the first difference to actually determine 
whether it is stationary or non-stationary.  
 
4.8.4. Test for Stationarity of First Difference for Monthly Totals 

 
 

Test type 
 

ADF Test (*) KPSS Test (**) 
Test Statistic -4.414 0.080478 

P-value 0.01 0.1 
Stationary? YES YES 

                                       *; H0: The data is non-stationary 
                                       **H0: The data is stationary 

Table 16: Stationarity of First Difference 
 

From Table 4.16, using ADF test, we test the null hypothesis that the first differenced series is non-stationary. The 
table shows a test-statistic of -4.414 and a p-value of 0.01 which is less than the alpha value (α) of 0.05. This tells us to fail 
to reject the alternative hypothesis at 5% significance level; hence the differenced series is stationary. Using the KPSS test, 

  
ADF Test (*) KPSS Test (**) 

Test Statistic 
Lag order 

-2.8454 
4 

2.5524 
2 

P-value 0.2291 0.01 
Stationary? NO NO 

(*); H0: The data is non-stationary 
(**); H0: The data is stationary 
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we test the null hypothesis that the first difference series is stationary. From all indications shows a p-value higher or 
greater than alpha value (α) of 0.05 telling us of failing to reject the null hypothesis and conclude that the first differenced 
series is stationary. 
This time, the test for stationarity reveals that the data for pension monthly totals is stationary in its first difference. 
Hence, time series model can be built only when the data has been differenced in the first place. 
 
4.9. Determining the Lags of the Arima Model 
 

 
Figure 10:  Plots for First Difference 

 
Figure 10 shows the ACF and PACF plots of the non-seasonal difference, from the ACF plot, significant spike that 

goes beyond the confidence region is seen at lag 2. However, the PACF plot clearly shows that those spikes are found at 
lags 2 and 7. Hence, Autoregressive and Moving Average components of our ARIMA model will most likely be at lag 2 or 7. 
The difference (integrated) component is to be at lag 1 since only the first difference taken.  
 
4.10. Model Selection 

 
ARIMA MODEL AIC AICc BIC 
ARIMA (2,1,0) 2917.94 2918.24 2925.2 
ARIMA (2,1,2) 2912.73 2913.51 2924.83 
ARIMA (7,1,0) 2915.55 2917.49 2934.9 
ARIMA (7,1,2) 2919.25 2922.3 2943.43 

Table 17: Arima Models 
 

Based on the AICs, AICc, and BICs found in Table 17, the ARIMA (2,1,2) was chosen to be the best ARIMA model 
since it has the least values. Hence, it will be implemented in this project and will be used for forecasting monthly total 
pension payments at SSNIT. 
 
4.10.1. Model Diagnostics (Ljung-Box and Arch-Lm Test) 

 
Test Lag Test Statistic P- Value 

L-Jung Box 1 0.0070593 0.933 
L-Jung Box 4 1.6637 0.7973 
ARCH-LM 4 5.05 0.2825 

ARCH-LM 8 10.33 0.2427 

Table 18:  Test Parameters 
 

Table 18, shows that the p-values of the Ljung Box test at both lags 1 and 4 are greater than alpha (α) value of 
0.05. The Ljung box test was used to test the null hypothesis of absence of serial correlation in the residual of the model. 
Now since all the p-value is greater than the alpha value of 0.05, we fail to reject the null hypothesis and conclude that 
there is no serial correlation in the residuals of the model. Hence the model is adequate. 
Also, the ARCH-LM test was used to test for the heteroscedasticity in the residual of the model. Now, since it has p-values 
at lags 8 and 4 which are higher than the alpha (α) value of 0.05, we fail to reject the null hypothesis and conclude that 
there is no heteroscedasticity in the residual of the model. Hence the model is adequate. 
 
4.10.2. Forecasting with ARIMA 

Now the suitable model (ARIMA (2, 1, 2)) that fits the data has been identified and has passed through the 
necessary model test, the next thing will be to forecast to see how future trend of total amounts paid to pensioners will be 
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like. The model was then used to forecast for the total monthly payments to pensioners of SSNIT for the next three years of 
SSNIT as shown in the table below. 

 
    80% Confidence Interval 95% Confidence interval 

Month Point 
Forecast 

Low High Low High 

Jan-19 120240804 81675647 158805961 61260486 179221122 
Feb-19 120655902 80634901 160676903 59449063 181862742 
Mar-19 121192533 79626581 162758485 57622895 184762171 
Apr-19 121207999 78179548 164236450 55401661 187014336 
May-19 120824282 76492096 165156469 53024054 188624511 
Jun-19 120584571 75030466 166138676 50915580 190253563 
Jul-19 120722853 73929906 167515800 49159216 192286490 

Aug-19 120980675 72920191 169041159 49159216 194482843 
Sep-19 121032880 71736968 170328791 45641289 196424471 
Oct-19 120875175 70416187 171334162 43704812 198045537 
Nov-19 120743084 69171745 172314424 41871527 199614642 
Dec-19 120779937 68104911 173454962 40220437 201339436 
Jan-20 120898587 67116461 174680714 38645923 203151252 
Feb-20 120942225 66070611 175813839 37023333 204861117 
Mar-20 120881322 64957118 176805525 35352633 206410011 
Apr-20 120813121 63868181 177758060 33723351 207902890 
May-20 120817121 62865679 178768563 32188038 209446204 
Jun-20 120869439 61917690 179821188 30710519 211028359 
Jul-20 120897649 60958500 180836799 29228631 212566668 

Aug-20 120876133 59971183 181781082 27730051 214022215 
Sep-20 120842671 58992946 182692395 26251679 215433662 
Oct-20 120838508 58057749 183619268 24823623 216853394 
Nov-20 120860532 57157839 184563226 23435670 218285394 
Dec-20 120876688 56262904 185490472 22058433 219694944 

Table 19:  Forecasted Values 
 

 
Figure 11: Graph of Forecast Values 

 
Figure 4.16 above is the graph of the three-year forecast of ARIMA (2,1,2), with its 80% and 95% confidence 

intervals.  The forecast reveals that monthly pension totals will reduce shortly and then rise again and after become 
constant for the next three years. Actually, the point forecast values are not constant throughout the period as the graph is 
suggesting a constant forecast. They vary in thousands which do not clearly show on the forecast graph. 
On this note, it can be concluded that the two ARIMA models built in this project are good time series models forecasting 
the number of pensioners and monthly pension payments on the scheme for the next 36 months, hence the two models 
should be implemented. 
 
5. Summary and Recommendation  

The improvement in technology, health and pension schemes in line with social protection policies have become 
pre-occupation of humans due to the unpredictability of life at old age. Due to this, many developed and developing 
countries have introduced various pensions based on the ability of the countries to project the age and growth rates of 
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their citizens. The study considered the sustainability of old age pension benefit using statistical analysis. The study was 
based on three objectives namely; to determine the distribution of the number of benefits that is paid on old age pension, 
to determine the distribution of the amount of benefits paid to old age pensioners, to estimate the parameters: the number 
of old age pensioners and the amount of benefit. 

The introduction of pension in Ghana was to promote loyalty and efficiency in the 1940s within the colonial 
service. The problem statement is to analyse and estimate the value of future liability of the scheme. The theoretical 
frameworks and methodology clearly explain the general frameworks behind the study and the approach in achieving the 
objectives of the study. In order to achieve the purpose of the study, a secondary data was retrieved from the head office of 
SSNIT in Accra which entailed the number of pensioners and the amount paid out to them from 2011 to 2017 on monthly 
basis.  

The first and second research objective investigated the best statistical distributions that best fits or best 
describes the nature of the number of pensioners and the total monthly payment of the scheme and its implications. It was 
discovered that, both number of pensioners and monthly payments followed positively skewed distributions which 
implied that, there were values that were below the mean for most of the months. Nonetheless, there were also some 
extreme values which were greater than the mean. The last objective also sought to analyse the trend, best fitted models 
and forecasted values of both number of pensioners and total monthly payments of the scheme. This brought to bare the 
total future liability on old age pension benefit which the scheme is likely to experience and its nature. It was revealed 
based on the forecasted values that, the scheme will experience increasing values on old age pension benefit for both 
number and amount of payment. 

 
6.  Recommendations 

In view of the findings of the study, the following recommendations are proposed; 
 Since the distribution of the number of pensioners (Negative Binomial) is positively skewed, there is a probability 

that for some period they may experience extreme increase in the number of pensioners though the probability is 
less. In view of this, they should try as much as possible to increase the enrolment (number of contributors) so 
that their contributions can be used to offset these pensioners in case of massive increase. 

 The distribution for monthly payments (Lognormal (3P)) is also positively skewed and hence there is a likelihood 
of them experiencing payment of extremely huge amounts to pensioners at certain periods. As a result, they 
should invest some of their funds in more liquid investments so that in the case of massive increase they can fall 
on these investments to still fulfil their mandate/ responsibility (paying Benefit to pensioners). 

 Monthly payments can also increase even though the number of pensioners might not have increased due to 
inflation and indexation. They must be careful how and the choice of investment since for some more risky 
investments, in the case of inflation the investment will lose its value as well as the returns. In this case when 
SSNIT experiences a massive increase for a season and receives low returns, they will not be able to fulfil their 
obligation. 
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