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1. Introduction  

Collections of random curved surfaces have applications in field theory [ref.1-3] and for biological membranes and micro-emulsions 

[ref.4-7]. Curved biological membranes are described with elastic curvature surface-energy. Changes of shape, thermal fluctuations, 

influence properties like the rigidity of membrane surfaces [ref.8]. The wavelength of the fluctuations relative to the characteristic 

sizes of the surface, that is the total size and the size of the component parts, is decisive for these systems. Spherical membranes, 

vesicles, can be regarded as an ideal gas with a fixed vesicle number. In this way one has described sets of spherical membrane 

surfaces, starting from elastic curvature, with as result size distributions [ref.6]. Another concept is higher-order, i.e. non-Hookean, 

bending elasticity.  

In this article a set of spherical Langmuir monolayer surfaces is described starting from the size properties of a number of asymmetric 

surfactants on one side of the, closed, surfaces, without referring to a priori knowledge of curvature surface energies. This is a purely 

geometrical description that uses only physical measures of the sizes of the spheres and surfactants, in contrast to existing [ref.4-7] 

theories. The description includes a statistical mechanical model of a gas composed of a variable number of non-connected 

individually varying sphere-like surface parts of constant total surface area in a volume. Instead of superimposing elastic curvature for 

the surface parts now introduced are surfactants that are treated as a gas of surface particles, with chains that stick out on the inside of 

the spheres thus giving the surface thickness. The free area for the surfactants is taken to be lying in a plane at a certain constant depth 

(d) beneath the sphere surface and thus to be smaller than the sphere surface area itself, and dependent on individual curvature radius 

(Ri). From this dependence originates the interaction between curvature and depth. In fact, the free area is proportional to (1 - d /Ri)
2∝ 

exp (- 2 d /Ri) for d small compared toRi. For the whole sphere-like surface part there are a number of (∝ Ri
2
) surfactants on it, thus 

giving an interaction factor proportional to exp (- 2 dRi). 

Thus because of only entropy considerations the asymmetric surfactants cause an interaction energy for the curved surface parts that is 

different from usual elastic curvature. In fact, the interaction energy turns out to be formally equivalent to the energy of spontaneous 

curvature, proportional locally to the curvature tensor instead of the square of the curvature tensor, but then without the main elastic 

curvature term along with it and without an ad hoc elastic curvature constant.  

Another difference with existing descriptions is that the sphere-like surface parts are treated as a collective in a volume with a constant 

total surface area and a variable number of surface parts. The spheres themselves are treated as an excluded volume gas and this 

results in extra free energy factors. The volume in which the sphere surfaces are situated returns as a parameter in the equations for the 

partition function and the equations of state. Instead of the wavelengths of shape fluctuations now the variables are the variable sizes, 

radii (Ri), of the individual sphere-like surface parts, and the variable number of sphere-like surface parts (q).  
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Abstract: 

For a set of closed curved surfaces that resemble a Langmuir monolayer an energy is defined that depends only on the 

curvature of the surfaces interacting with the dimensions normal to the surfaces, that is, the thickness of these surfaces. The 

thickness, or depth, of the surfaces originates because of surface-particles with chains, that move freely on the inside of the 

surfaces at a certain depth. This is a purely geometrical description that does not depend on the introduction of ad hoc 

constants like the elastic constant. With a statistical mechanical model the equations of state are calculated for a gas of non-

connected sphere-like surfaces in a volume. There are two states of which the lower temperature state is depending mostly 

on the interaction energy and surface properties, and the higher temperature state is depending mostly on sphere kinetic and 

volume properties. This results in aggregation of the sphere-like surfaces from many small ones to few large ones when 

lowering temperature and vice versa. The model allows for the calculation of the partition function and, when the emergence 

of the curvature - depth interaction is described as a phase-transformation, for the application of Noether’s theorem. 

Because of these properties, the model is interesting in its own right apart from being an addition to existing elastic 

descriptions of surfaces. 
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Not included in the description are interface interactions, like for instance electrostatic interactions, that are, in most descriptions, used 

to explain the existence of interface layers. This model restricts itself to geometrical interactions in order to concentrate on their effect 

on aggregation of surface parts.  

This model, with a geometrical surface energy, allows for the calculation of the partition function and, as a main result, the equations 

of state for a set of sphere-like surface parts for a low and a high temperature state. There are found to be two asymptotic states 

relative to a critical temperature (paragraph 3.1). In state I, for high temperature, there are many small spheres and thus the surface is 

relatively curved and in state II, for low temperature, there are relatively few large spheres and the surface is more flat. The limit 

totally flat is not reached because even for low numbers the spheres remain closed. In state, I the emphasis is on the gas of spheres in 

the volume with individual radii and in state II on the surface with the surfactants. Only in state II the effect of the depth of the surface 

is noticeable in the equation of state and in the average energy per sphere, with the interaction energy as described above (paragraph 

3.2). Also derived is an approximation for the size distributions of the radii for the individual spheres in both states (paragraph 3.3). 

As a final result a description of the emergence of the interaction of surface depth with curvature in terms of a phase-transformation is 

given, and Noether’s theorem is applied to discuss time-dependence (paragraph 4). In this case, quantisation seems justified, because 

the surfactants are not further specified and the sphere-surfaces are treated as a collective. 

The discussion section (paragraph 5) contains the following subjects. Firstly, the description is generalised to other dimensions than 

two surface dimensions. It is shown how this model can be a useful intermediary between higher dimensional spaces of different 

dimension. Besides this the derived size-distributions are compared with the ones found in [ref.6] where elastic curvature is used. 

Also, packing considerations and a critical parameter are discussed. 

 

2. Definitions 

 

2.1. Surface Properties and the Partition Function 

The surface is a simple form of a Langmuir monolayer [ref.9] of constant total area. Surfactants move freely on a surface part, a 

sphere, with chains that stick out on the inside of the surface at a certain depth d.  Inside and outside the sphere-like parts there is a gas 

with a density that is constant everywhere. The mass and surface density, and thus the total number, of the surfactants remains 

constant. 

Curvature influences the free area of the surfactants, measured at the depth d away from the sphere surface, and causes a curvature 

originating free energy. Chosen is for chains that stick out on the inside to achieve a balance between interaction- and kinetic- 

depending entropy for the spheres. As a result, the free area is smaller by a factor (1 - d /Ri )
2
 ~ exp (- 2d /Ri), where Ri is the variable 

individual sphere radius. This factor, for all surfactants on all spheres, is included in the configuration integral. For each sphere-like 

surface part the interaction energy can be predicted to be proportional to d Ri /a, with (a) the average surface area per surfactant, by 

multiplying the factor - 2d /Ri by the number of surfactants on the sphere Ri
2
 /a. One notices that this interaction factor is large for 

large sphere-like surfaces and small for small sphere-like surfaces. This will also be derived directly from the partition function, later 

in the text, in paragraph 3.2 in equations (5, 6).  

The partition function for the system is calculated with the spheres treated as an excluded volume gas for the collective movement of 

their surfactants, and the surfactants as free particles on a sphere as described above. The in-between gas can permeate through the 

surface and does not add anything new to the results and is left out in the following. To keep the total surface area constant, it is 

necessary that the total number of spheres and the average (not the individual) sphere-surface radius depend on each other.  

The spheres are perfectly round. It is possible to describe shape fluctuations, deviations from this perfect form, with spherical 

harmonics. These cause an extra energy, that however totally depends on the number of degrees of freedom for the deviations that is 

supposed to be equal to the total number of surfactants which remains constant.  

Applied is the thermo dynamical limit where the system and in proportion with it the volume and the total number of surfactants, and 

in this way the total surface area, are being greatly enlarged. 

To derive the partition function first the configuration integral Q, that contains all integration with constant q, the number of sphere-

like surface parts, is calculated. Then all the factors depending on q that are not included yet in Q are added to give the partition 

function Z(q) for constant number of spheres. Finally, there follows summation over q ranging from 1 to N, N the total number of 

surfactants, to derive the partition function Z from Z(q). From the definitions of the model it follows that there is: 

 

1. Q = 1/2π∫ dγ∫∏i dŘiexp (iγ(Ři
2
 – 1))(Ři

3 
) exp (– 8a

3
/w∑ Ři

3
 – 8πad /a  ∑Ři) 

 

Here used are the abbreviations average radius a with a
 2
 = 1/q ∑i Ri

2
 with Ri the individual sphere radius for sphere i with i = 1 … q, q 

the number of spheres, Ri = a Ři and the average volume per sphere w = 3V/4πq with V the overall volume. The upper limit of the 

second integral depends on the volume V and does not return in the final result. The abbreviations are introduced to facilitate notation 

when actually calculating Q. 

The integral representation of the delta functionδ (∑i Ři
2
 – q) is included for constant total surface area. The factor ∏i Ři

3
 is included in 

Q for the momentum integral for each sphere. A factor a
 3q

 among other terms will be included later in Z(q). The excluded volume 

interaction between the spheres in the volume V contains a factor 8 = 2
3
 because the radii Ri of the spheres are doubled to 2Ri to 

approximate exclusion at the rim between two average spheres. The factor for the change of free surface area -2 d /Ri for one 

surfactant because of curvature, as it was indicated above, is included in the exponent at the end, now for all the (∝ Ri
2
/a) surfactants 
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together on one sphere (the surfactant density ∝ 1/a where (a) is the average area for each surfactant on the surface) [note1].  All these 

factors are purely geometrical in origin following the specifics of the model. 

 

2.2. Calculation of the Partition Function and the Origin of the Two States 

To derive the partition function first the configuration integral Q is calculated. This, in a natural way, leads to the definition of the two 

states the system can be in. 

First one rewrites Q in the form Q = 1/2π∫ dγ ( ∫ dR exp (iγ R
2
 + F(R))) q leaving out the accent on R. There is F(R) = 3logR – 8a

 3
/w 

R
3
 – 8πad /a R summarising all factors dependent of R. F(R) can be approximated with F(R) = F(R0) – g (R – R0)

2
. This leads to a 

third order equation for R0 because of  

∂R F(R) = 0 for the maximum of the integrand at R = R0. The second order derivative of F(R) at R0 is negative and equal to –2g. The 

third order equation is R0
3
 + πwd /3aa

2
R0 – w /8a

 3
 = 0.  

When calculating Q one uses the solutions R0 of this equation for which one has to approximate a term (1+qc/q)
1/2

. The system is 

defined to be in state I for lowest order in qc/q and in state II for lowest order in q/qc where there is qc ≡  3 V d
 3 

/ a
3
, the transition 

number. This is the origin of the two states I and II. The term qc/q is the result of balancing the two factors in F(R) for the interaction 

entropy effect and for the momentum of the spheres. When the chains of the surfactants are taken to stick out on the outside instead of 

on the inside of the sphere surfaces, this leads to a positive sign for the change of the free surface area factor in both equation (1) and 

F(R). This situation is discussed in [note2].  

 

The further calculation of Q is as follows. By applying a contour transformation for the integral over R in Q one achieves: 

Q = 1/2π exp (q F(R0)∫dγexp (-iq γ ) X
q
 

where there is now X = 1/gR0 exp (-gR0
2
) x exp (x

2 
) (1/2π1/2

 +∫ dt exp (–t
2
 ) ) with x = g R0 /(g - iγ)

1/2
 and the integral over t in X is 

from zero to x. Then one writes exp(-iq γ) and x
q
 exp(qx

2
) in Q both as power series in (g - iγ) while the integral over t is 

approximated with its lowest term. Due to the residue theorem, the integral in Q, when taken over (g - iγ) instead of γ and reduced to a 

closed one, equals zero for all powers in (g - iγ) except one. Thus, the two power series combine with the integral in Q to one power 

series that is recognised as a Bessel function expansion. The result is  

Q = (π/4)
q/2

 exp( q (F(R0) - g - g R0
2
 ) ) (g R0 )

1-q/2 Ιq/2-1( 2qg R0 ) 

with Ιq/2-1 a Bessel function, for even number q and a similar expression for odd number q, taking only factors of order ( e
q
 ) since q, 

the number of spheres, is expected to be large. 

The Bessel function can be approximated for large q as  

Ιq/2-1( 2qg R0 ) = Ιq/2-1( (q/2 –1) 2gR0 /(1/2-1/q) ) = ( 2gR0 /(1/2-1/q) )
q/2-1

 exp( (q/2 -1)( z - log(1+z) )  

with z = ( 1+ (4g R0)
2
 )

1/2
. 

These approximations result in the following expressions for Q I / II  in the two states I and II: 

Q I = (πe/2)
q/2

 exp( q (F(R0) – g – gR0
2
) ) 

Q II = (π)
q/2

 exp( q (F(R0) – g – gR0
2
 + 2gR0) ). 

where there is used that z≈1 for state I and z-log(1+z) ≈ z ≈ 4g R0 for state II. 

The final derivation of Q I / II is done by insertion of F(R0), g and R0 and then the calculation of the partition functions Z I / II (q) and Z I / 

II  = ∑q Z I / II (q) is straightforward. In paragraph 3.1 the equations of state (equations 3, 4) are given as the main result of this paper. 

Below are given the expressions for   

Z I and Z II where the cI / II are unspecified dimensionless constants that re-occur in equation (4) and  

K = ( MkT/h
2 

)
3/2

 with M the mass of the surfactants, T the temperature, k is the constant of Boltzmann and h the constant of Planck 

[note3]: 

 

2. Z I  = exp(  2cI ( V
2
 K / a

3/2
 )

1/2
  ) 

Z II = exp(  cII V a
3/2

 K / d
 3 

+  4πd
2 
N / a +  ( 16π cII V N a

1/2
 K / d )

1/2
  ) 

 

3. Results 

 

3.1. The Equations of State 

The average number of spheres < q > and pressure P are calculated for the states I and II using 

< q > = ( 1 / Z ) ∑q q Z (q) and P = kT ∂V ln Z. This gives as result the equations of state: 

 

3. P I V = 2 kT < q I> 

P II V = kT ( < q II> +  q0 ) 

 

4. < q I> = cI  V K
1/2

 / a
3/4

 

< q II> = cII  V K a
3/2

 / d
 3
 

 

q0 = ( 4π N d
2 

/ a < q II> )
1/2

, cI and cII are the numerical constants and K = ( MkT/h
2
 )

3/2
 as above. Equations (3) and (4) can be 

discussed in the following way.  
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The transition number qc = 3 V d
 3 

/ a
3
 corresponds with a temperature Tc such that for T > Tc the system is in state I and for T < Tc in 

state II. Tc is defined by < q I (Tc) > = qc = < q II (Tc) >.  

For q near qc the approximations for Z and thus for equations (3) en (4) are not very precise. Using anyhow < q (Tc) >≅ qc it then 

follows that kTc = constant d
 4

h
2
 / Ma

3
. It is clear from equation (4) that not simply the limit d→ 0 can be taken, and this agrees with 

the condition for which state II exists, that is q < qc∝d
 3

. From equation (3) and (4) it follows that at every temperature T there is an 

average surfactant surface area a = ac, that marks the transition from state I to state II such that Tc(ac) = T, for which the volume 

pressure for the spheres has a maximum.  

At first instance the interaction dependent part q0, caused by the depth of the surface, is expected to occur for both states and for state I 

(small spheres) even more than for state II (large spheres). However, for state I , q > qc and the average radius < R I
2
> = Na/< qI> 

corresponding to q is relatively small so the number of surfactants per sphere is low and q0 = < R I
2
>

1/2
d / a << 1 and this agrees with 

equation (3) [note4] where q0 does not appear for state I. 

Equation (3) suggests that the number of degrees of freedom for state I and II differ by a factor two. Indeed state I has three directions 

of movement for each sphere in the volume plus one for the sphere radius, while state II has only two directions of movement, for the 

surfactants on the sphere surface. Further in state II it is as if there is an extra number of spheres, q0. However, notice that 

q0 (Tc) = ( 4/3π Na
2 
/ V d )

1/2
<< 1 at the transition from II to I so there is no discontinuity from state II to state I because of q0. 

Both < q I> and < q II> are ∝V and thus, when the volume V is made larger, the number of spheres becomes larger too and the average 

radius of the spheres decreases. This is not at all a trivial result since the number of surfactants N and the total surface area are kept 

constant and one would expect that with an increase of V the gas of spheres just would become more dilute while keeping the average 

sphere radius constant. Instead of this now together with a constant surface density for the surfactants there is also maintained a 

constant volume density for the spheres. 

 

3.2. The Curvature - Depth Interaction Energy 

The average energy for an average sphere is calculated with U / < q > = ( 1/< q > ) T
2∂T k ln Z. 

 

5. U I / < q I> = 3/2 kT ( 1 + < N I> ) 

U II / < q II> = 3/2 kT ( 1 + < N II> +  q0 ) 

 

q0 = ( 4π< N II >d
 2

 / a )
1/2

 = 4π< R II
2
>

1/2
d / a with < R II

2
>

1/2
 the radius of a sphere with < N II > surfactants, and < N I / II> = N / < q I / 

II>. 

Equation (5) is interpreted for the factor 3/2kT times 1 because of the movement of the centre of a sphere and a factor kT< N I / II > 

because of the movement of the surfactants on a sphere surface. For shape fluctuations, when the surface can change locally along the 

normal, the number of degrees of freedom is Ni for a sphere i, with the corresponding average extra energy 1/2kT< N I / II > also as 

expected present in (5). The 3/2kTq0 part is the average interaction energy due to the depth d and the curvature of the surface. Just like 

before, with the equations of state, by considering that for state I there is q > qc and q0 = < R I
2
>

1/2
d / a << 1, one notices that there is 

no discontinuity from state II to state I caused by q0. 

Generalising from equation (5) for state II and using the expression for q0 above, defined now in equation (6): 

 

6. α(Ri) = 6π kT Rid / a  

 

is α(Ri) as an approximation for the individual interaction energy for a sphere i with radius Ri where i = 1,…, < q I / II>. There is 

assumed < Ri>  = < Ri
2
>

1/2
 together with <α(Ri) > = 3/2kTq0, so the average individual interaction energy is the same as the average 

interaction energy. 

 

3.3. Distribution of Sphere Radii 

For both states I en II, ei = 3/2 kT ( 1  +  Ni ) +  αI / II with αI = 0 and α II = α(Ni) is an approximation for the total energy for a sphere i 

with a number Ni of surfactants or radius Ri where i = 1,…, < q I / II>. Assuming Bose statistics, that is the number of spheres with the 

same number of surfactants Ni is not limited, then it follows that the distribution is   

P(Ni) = (1/ < q I / II>) 1/ (exp (ei−µ)/kT  - 1) so that for the corresponding radius Ri with   

P(Ri) ∝ P(Ni)dNi/dRithere is:  

 

7. P(Ri) ∝  (Ri /a) exp −6π/a ( Ri
2− R min

2
 ) 

P’(Ri) ∝  exp −( Ri /< R I / II 
2
>

1/2− 3/4 )
 2
 

 

A chemical potential µ is added that is defined with the restriction ∑i P(Ni) = 1 where there is summed over Ni  = N min …N. The 

dependence of P(Ri) on T is completely included in R min, corresponding to  

N min, that may be estimated with an assumption like R min = < R I / II 
2
>

1/2
 /constant. Always few large spheres with R  ≥< R I / II

2
>

1/2
  are 

accompanied by many small spheres with R ∼ R min. The alternative P’(Ri) is the Gauss distribution that follows from the assumptions 

of [note5] for the variance of R. For this alternative distribution, in state I for small spheres the deviation is much smaller than in state 

II for large spheres.  
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4. Phase-Transformation and Noether’s Theorem 
When quantising in a naïve way, the de Broglie wavelengths for the individual sphere i and the surface particles on it and their 

momenta hki and hk can be introduced, while the individual mass Mi = Ni M, and thus also the related surface radius Ri and number Ni 

of surfactants, of the sphere is the quantity to be determined. It follows that for the sphere i there is the equation dωi/dki = hki/Mi, with  

Mi = h
2
ki

2 
/ kT, and this, for three directions together, gives for the energy the result 

hωi = 3/2kT (1+ ln Ni/< Ni>) ≈ 3/2 kT Ni/< Ni>. 

For each of the Ni surfactants on sphere i one has dν/dk = hk/M, and this gives, for the two directions along the sphere surface and one 

direction perpendicular to it, for the Ni surfactants together  

3Ni hν = 3/2 kT Ni. Assumed now is, in agreement with paragraph 3.2, an extra interaction surface energy A = 3/2 kT Nid / Ri. This 

energy is equal to A = ( πd
 2

 / a )
1/2

 h
2
kki / M where now ki and k are isotropic 3-dim. vectors. In this way A can be included in the 

total energy  

hωi = 3/2 kT (Ni/< Ni> + Ni) + A = (1/B) h
2
ki

2
 / 2M + A  for sphere i like a vector potential (with  

B = < Ni>/ 1+< Ni> ): 

 

8. hωi = (1/B) ( h ki+ B ( πd
 2
 / a )

1/2
 h k )

2
 / 2M  −  B ( πd

 2
 / a ) h

2
k

2
 / 2M 

 

The result of introducing the interaction of the depth with the curvature of the surface can thus be described with a phase-

transformation for the wave-function of the sphere. 

With proper boundary conditions, conservation of the energy when applying the phase-transformation in state I where the interaction 

energy is negligible, means according to Noethers theorem that the Noether charge (∝< 1/Ri> = < Tr h > = average curvature) is a 

constant in time. The Noether charge is derived by assuming that the Lagrangian depends on the first derivatives of the phase-

transformation only and that the Noether current is linear in kionly. 

In state II the total energy hωi does depend on d and the interaction energy significantly, and the Noether charge can change in time. In 

this way, the time dependence makes it possible to differentiate between state I and II. Equation (8) can be assumed to be a good 

approximation for both asymptotic states I and II, since the interaction energy in state II decreases when approaching state I. When 

one considers equation (8) to be describing the real physical situation in both states (and that the interaction energy in state I is only 

relatively small compared to state II) the time-dependence of the Noether charge in state I is expected to be only small relative to the 

time dependence in state II rather than it being strictly conserved. 

 

5. Discussion 

It follows from the equations of state that both states I and II (equations 3, 4) have the property that the volume density of the spheres 

is independent of the volume itself. In fact, the number of spheres q is proportional to the overall volume V when expanding according 

to the equations of state, in both states. 

Thus, the equations of state are partly equivalent to a new constraint for the surface, that is: the volume density for the sphere-like 

surface parts the total surface is composed of, in the overall volume, is constant whereas the number of sphere-like surface parts is not. 

On the other hand, the constraints for the total surface itself as a two-dimensional space for the surfactants can be summarised as: the 

surface density 1/a of the surfactants and the total number N of surfactants are both constant. Surprisingly, when the overall volume V 

changes while respecting these two surface constraints, according to the equations of state the total number of spheres changes 

accordingly and the volume density of the spheres remains constant.  

This suggests the definition of a continuation of constraints when transferring two-dimensional surface properties to three-dimensional 

volume properties: The constraint for density is maintained while the constraint for number is not. For a surface with thickness and 

depth, continuation of constraints is the link towards a description with volume-like properties i.e. spheres in a volume. It is 

conjectured that continuation of constraints can be generalised towards the transition between any kind of lower to higher dimensional 

spaces, when the lower dimensional space has some ‘depth’ property normal to it relating it to the higher dimensional space.  It is 

characterised by the maintenance of density constraints while number constraints are lost. 

For the thermo dynamical limit (TL) there is the requirement that parts of the system that are apart far enough have no interaction 

[ref.10]. Here the range of the interaction is equal to the radius of the sphere surface (for an excluded volume system there is only 

interaction when spheres touch each other). From equation (4) it is noticed that the average area for a sphere is Na / < q >∝ N/V and 

this is a constant in the TL. But this means that consequently for this kind of system the mentioned requirement is always fulfilled. 

This is due to the existence of qc and the possibility of defining for this system a continuation of constraints as an alternative for the 

equations of state. 

The results concerning size distributions, depending only on surface depth and density of the surfactants on the sphere-like surface 

parts, could be qualitatively descriptive for closed membranes. Helfrich [ref.6] describes distributions depending on elastic curvature 

and he expects combinations of few large spherical surfaces with many small ones, as is expected in this paper as well. However, his 

distributions, apart from having a different origin (elastic curvature instead of depth-curvature interaction), are also different because 

Helfrich’s description does not allow for the emergence of two states I and II. The emergence of the two states I and II with a critical 

temperature Tc and transition number qc as described in paragraph 3.1 is one main result of this paper. 

Because the surfactants are treated as a gas and the spheres as a collective, the model deviates from the usual packing considerations 

as they are described in [ref.11]. The average surface area per surfactant is larger than it usually is. The usual packing parameter is 

proportional to v0 / a d c where v0 is the surfactant chain volume and d c the maximal chain length. Instead now the critical parameter is 
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<q I / II>/ qc where qc = 3 V d
 3
 / a

3
 is the transition number. Notice that <q I / II> is proportional to V, equation (4), as well as qc so <q I / II 

>/ qc is independent of V. The critical parameter depends mainly on the depth d relative to a, and on temperature. It is typical for this 

geometrical model that the temperature enters the critical parameter. In the usual packing parameter, v0 depends on the effective chain 

length (chain deformation) and surface curvature. Small spherical surfaces have high curvature and the packing parameter will be low 

whereas larger surfaces have a relatively high packing parameter until the critical value 1/3 is reached when spherical surfaces change 

to another shape (cylindrical surfaces). For the critical parameter described in this article the situation is different. Sphere-surfaces 

with a depth d large relative to a, will have a relatively high qc and thus will be mainly in state II where the emphasis is on surface 

properties like the interaction energy. This corresponds to a state with mainly large spheres until by decreasing depth d or increasing 

temperature, <q II>/ qc approaches the value = 1 and state I is reached. Note however that when crossing the transition value = 1 the 

shape of the surfaces remains spherical, it is the equation of state that changes. 

Starting from state II and lowering surface pressure in such a way that a and <q> both increase following equation (4), one approaches 

state I but never reaches it since in state I, <q> again decreases with increasing a. A change of surface pressure never can lead to a 

change of state (from I to II or vice versa) whereas a change of volume pressure can lead to such a change, volume pressure being 

always proportional to <q>, in both states. This kind of pressure behaviour, when studying aggregates of surfaces with surfactants that 

behave like a gas, is predicted by this theory. 

 

6. Acknowledgement 

I would like tothank Prof. N. van Kampen, Utrecht University, The Netherlands, for support during the main calculating phase of 

writing this manuscript. 
 

7. Notes 

[1]   Because of the curvature of the sphere surface, for a sphere with radius R, the free area for the surfactants changes with a factor 

(1− d /R)
2∼ (1−2 d /R) ∼exp (−2 d /R). This applies for all 4πR

2
/a particles on the sphere so eventually a factor exp (− 8πR d /a) in Q 

results. Generally, for just one irregularly shaped sphere with surface area 4πR
2
 in the same way a free energy factor  

exp( −d /a ∫ ( g )
1/2

 Tr h ) results, with g the metric and Tr h the trace of the curvature tensor (indices left out). The expression in the 

exponent is, now without a factor kT, known as a symmetry breaking term for elastic curvature. One higher order in d /R gives for a 

surface the Euler constant that depends on its topological shape. 

The elastic curvature energy is proportional to (Tr h)
2
 and generalisation to other dimensions than 1 or 2 is solved by arguing that (Tr 

h)
2
 = (∇2

 X
2
)

2
 (X surface-co-ordinate). For the curvature energy, proportional to (Tr h = n ⋅∇2

 X
2
) generalised from the above factor 

this is not possible and the normal vector n to the surface has to be derived using in d dimensions, d linear equations and 

normalisation. 

[2]   When the chains stick out on the outside of the sphere surfaces the factor a /d a R is positive in equation (1) and F(R). Then the 

term qc/q still occurs with the same qc as before. State I and II are defined in the same way and for state I the calculation remains the 

same. However, for state II with  

qc/q > 1 the solution of the third order equation has to be derived now balancing the interaction entropy factor and the excluded 

volume factor. This leads to a slightly different partition function, equation (2), and different average number of spheres < qII>, 

equation (4), for state II. 

[3]   A typical summation is Z I =∑q Z I (q). The derivation of Z I shows the origin of the factor 2 in equation (2) for the partition 

function for state I that re-occurs in equation (3) for the equation of state in state I. Z I (q) can be written as Z I (q) = q
-2q

 exp (q εI ) with 

εI  = constant + ln (V
2
/a

3/2
 K). 

One has Z I  = ∑q  q
-2q

  exp (q εI ) = π1/2∑q 1/q! exp( q (εI –2)) / Γ (q+1/2). Now by considering that the value of q, the number of 

spheres, for which Z I (q) is maximal is very large in state I but not as large as the total number of surfactants N, it follows that the 

summation ∑q can approximately be taken from zero to ∞ instead of from qc to N. With help of the expansion definition of the Bessel 

function  

Ι-1/2(z) = ∑q 1/q! (z/2)
2q-1/2

/ Γ (q+1/2) one derives that Z I  = π1/2
 exp( 1/4 (εI –2)) Ι-1/2 ( 2exp( 1/2(εI –2)) ). 

One now assumes that exp(εI) is large because it contains the volume V and the gas of spheres is taken to be dilute. Inserted is the 

approximation for the Bessel function for large values 

Ι-1/2 (z) ≈ (2π z)
-1/2

 exp(z) and the final result is Z I  =  1/2 exp ( 2exp( 1/2(εI –2)) ). One notices the factor 2 before the second exponent 

due to the expansion definition of the Bessel function. In the case of Z II the intermediate step using the Bessel function does not occur 

and a similar factor is absent. 

[4]<Rq
2
>

1/2
d /a can be estimated considering that qc / q < 1 for state I and <Rq

2
>

3/2
 q << V and  

1/q << 1. It then follows from qc = 3 V d
 3 

/ a
3
 that <Rq

2
>

1/2 
d /a << 1 for this state. The assumption  

<Rq
2
>

3/2
 q << V only means that the volume density of the spheres is very low, a requirement for treating the spheres as an excluded 

volume system when calculating the partition function. 

[5]   For the definition of α it is assumed that < R >
2
 = < R

2
>. However, generally 

< R >
2
 = < R

2
>−<∆R >

2
 , (<∆R >

2
 variance of R). When equating the average interaction energy  

α = 6πkT< R
2 

>
1/2

d /a to the average free energy for one sphere and letting it resemble the factor in the exponent 8πkT< R >d /a in 

[note1]it follows that <∆R >
2
 = 1/2< R

2
>. This value for the variance of R is used to derive the alternative distribution for R. This is 
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only likely to be an acceptable approximation for low temperature, thus only for state II, but nevertheless assumed to be true for both 

states. 
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