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1. Introduction: Why Ellipticity for Galaxy Clusters? 
In the last thirty years several studies have discussed the problem of galaxy cluster shapes. Mostly one starts from a spherical model 
elaborating towards ellipticity, and finds that galaxy clusters can be described using prolate or oblate shapes (De Theije ea, 1995). 
Ellipticity is found to increase with redshift (Hopkins, 2005). Also, theories with rotating elliptical cluster shapes seem to fit better to 
data of X-ray observations of intercluster hot baryon gas leading to new and more accurate estimates of cluster masses. These in turn 
now correspond better to CBM microwave Sunyaev-Zel’Dovich mass estimates and gravitational lensing mass estimates, a matching 
problem that had been waiting for a solution for a long time (Wu and Fang, 1996, Girardi ea, 1997, Sadat, 1997, AMI Consortium, 
2012).  
In this study, I similarly start from a spherical cluster shape. Standard properties of spherical galaxy clusters are described in 
paragraph 2. Assumed is virial equilibrium between a spherically symmetric gravitational potential energy and thermal pressure as 
usual (Sadat, 1997). I introduce a geometric mass to radius relation adapted to elliptic shape, in paragraph 3. Using ellipticity instead 
of spherical symmetry when calculating the gravitational potential energy is possible at this point, however I will do this later on, in 
paragraph 4., when refining the results to include a constraint for cluster shape. In this way one finds results singularly due to 
ellipticity. Applying the constraint, I subsequently derive a criterium for the cluster dark matter particle mass, in paragraph 5. This last 
result includes ‘scaling relations’ between ellipticity, dark matter particle mass and fraction and the Hubble constant h and the 
cosmological parameter k. In section 6. finite alignments of galaxy clusters are discussed, challenging the usual three-dimensional 
virial equilibrium and the dark matter fraction constant: instead of intra cluster equilibrium proposed is inter cluster gravitation 
equilibrium, and baryon pressure balance between all neighboring clusters, in the alignment direction. 
 
2. Properties of Galaxy Clusters Assuming Spherical Shape 
Galaxy clusters are understood to exist of baryon gas, dark matter and galaxies, the last representing only a small percentage of the 
total cluster mass. For the baryon gas (the ICM intra cluster medium gas) mostly is used a power law temperature profile, sometimes 
extrapolated towards a flat temperature profile, i.e. with a constant cluster temperature independent of the distance R to the cluster 
centre.  For the baryon density n, one often assumes a beta model profile: n(R) = n0 (1+ (R/Rc )2 )-3β/2 where Rc is the cluster core 
radius, n0 a normalization constant equal to the central density and β a parameter to be decided by observation. The beta model was 
introduced in 1976 by Cavaliere and Fusco-Femiane. Cluster density profiles like these are described in detail in (Arnaud, 2009, 
Popesso, 2006) among others. The beta model seems to be a good fit observationally, for β = 2/3. For this value of β a simplified 
power law profile is acceptable outside the core:  n= n0 (R/Rc)-2. Similar profiles, both for temperature and density, are applied in 
computer simulations of cluster distributions (De Theije ea, 1995, Zamboni, 2010).  
The virial equilibrium, 2K + U = 0, for total kinematic energy K and total potential energy U, depends on observed velocity dispersion 
to estimate Mvir. The definition of the cluster matter halo (the matter within virial radius distance to the cluster center) follows from 
the related dynamic balance  
dP(R)/dR = -n(R) GM(R)/R2 at Rvir for a spherical cluster with mass Mvir. G is the gravitation constant, P(R) the baryon pressure and 
M(R) the total mass including dark matter and ICM baryons, where M(R) depends on R following spherical geometry. Outward ICM 
baryon pressure variation and inward gravitational pull cancel at the sphere surface with virial radius. Assuming the baryons to behave 
like an ideal gas, P(R) = n kbT/μmp links P(R) to density n and temperature kbT with μmp the baryon particle mass, which can be 
measured observationally (Sadat, 1997 and references therein). 
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So-called scaling relations between characteristic properties follow from assuming cluster self-similarity, proposed by Kaiser in 1986 
(Mathiesen, 2000, Popesso, 2006, Boulderstone, 2013, and references therein). Self-similarity implies that relations between 
properties do not depend on scale. They do depend on the cosmological model used. Mostly, scaling relations link observational 
quantities to mass. Used is the scaling relation between temperature and virial mass: kbT scales with Mvir

2/3, which directly derives 
from expressing the virial mass in terms of the virial radius in an Einstein De Sitter cosmology. 
 
3. Virial Mass Radius Relation for Elliptic Clusters 
To describe an elliptic cluster shape, one can write an ellipse with the expression:  x2/a2 + y2/b2 + z2/c2 = 1, following (De Theije ea, 
1995), while there are two independent directions x and z, with direction y similar to direction x, and a = b and c constants. When 
assuming a spherical geometry, the cluster virial mass radius relation includes the average baryon density <n> assumed equal to 
n(Rvir), the baryon density fraction fb, and μmp the baryon particle mass (μ is a certain constant near 0.6 and mp the proton mass). In 
this widely used relation (Borgani and Kravtsov, 2011, Boulderstone, 2013, Weissman, 2013) one has only to add on the right-hand 
side the factor (c/a), to straightforwardly derive an elliptical geometry virial mass radius relation: 
 
1)     Mvir = μmp n(Rvir)/fb 4/3π Rvir

3 (c/a) 
 
I will apply this relation to understand galaxy cluster ellipticity in terms of prolate and oblate, assuming intra cluster virial equilibrium, 
in paragraph 4. 
Extensive discussion exists of real cluster shape as prolate and oblate ellipses. Some authors aim at finding observational proof of 
ellipticity for specific galaxy clusters (Plionis and Basilakos, 2004, Rembold and Pastoriza, 2012). Other authors use computer 
simulations for distributions of clusters, where one tries to find and adjust parameters to evaluate distributions to fit observations. Of 
the very diverse studies with computer simulations that favor prolate cluster ellipticity, I mention the following. When selecting 
distributions that result from groups of evenly balanced prolate and oblate clusters, Robotham ea study raw data and data corrected for 
cluster finity, of which the raw data are expressive of prolate abundance (Robotham ea, 2008). Hopkins (Hopkins ea, 2005) finds that 
cluster ellipticity and alignment increase with redshift. This suggests that prolate clusters, that are easier to form alignments than 
oblate clusters, at higher redshift are most abundant. Plionis (Plionis ea, 2013) finds that for poor clusters, that are more often present 
at high redshift, there is a preference for prolate shape. Sereno finds good fits to X-ray and SZ data for simulations with preferably 
prolate cluster distributions (Sereno ea, 2006).  
In the next paragraph, I will demonstrate how one can deduce from the virial equilibrium a constraint for the ellipticity parameters a, b 
and c. It turns out that only prolate clusters fulfill virial equilibrium, in agreement with the above studies. To show this, first triaxiality 
is introduced in the standard way and then this is restricted to two independent directions. 
 
4. From Triaxiality to Cluster Shape Constraint in Two Steps 
 
4.1. Triaxiality Values and Oblates 
It has become standard to use a triaxiality parameter T = c2-b2/c2-a2, defined by Franx ea, in 1991, to describe ellipticity with three 
independent directions x, y and z (De Theije ea, 1995, De Theije ea, 1998, and references therein). T and the parameter ξ1 = c/a can 
approximately be related as T ≈ 1 – a/c = 1 - 1/ξ1 when c > b > a with b2 ≈ ac. These relations will be assumed true more generally, 
also for ellipticity in two directions. Distributions of mostly prolate or mostly oblate galaxy clusters are related to average T values 1 
or 0, as shown by De Theije ea. It turns out in their study that the overall universe seems to prefer prolate groups of clusters (T = 1) in 
simulation calculations. This study was later refined by Robotham, who could only partly confirm the results. Nevertheless, it seems 
that, taking all evidence together, also Robotham ea find that at high redshift prolate clusters are most abundant. Also, the other 
authors mentioned above, whether studying observations or computer simulations, confirm this. 
Using the above approximate relation between T values and cluster shape in terms of ξ1 = c/a, it follows that only prolates and spheres 
are possible. In a next step, spheres are prohibited by assuming an elliptical gravitational potential leaving only prolates supported. 
One writes an ellipse as before using a, b and c. For ellipticity in two directions there is b/a = 1 and c/a = (A Rvir / Rcore+ B) = ξ1. A and 
B describe the large distance (A) and core (B) character of the shape to R relation (Zamboni, 2010). A positive value for A means that 
at large radius distance from the core the cluster shape is prolate, a negative value means similarly that this shape is oblate.  
De Theije ea find that for our universe approximately T = 1, and thus from the definition T = 1 – 1/ξ1 one concludes that ξ1 = c/a is 
(much) larger than 1. This suggests a non-spherical, that is, prolate cluster shape. 
When, in rare instances, De Theije ea find oblate universes, with T = 0, then ξ1 = c/a equals 1. However, c/a = 1 geometrically means a 
spherical shape. Oblate shape cannot be reached within the T= 0 instances. Thus, a first inference is, just by analyzing the De Theije 
results, that oblate shapes are not supported by this description and only prolate or spherical shapes are expected. 
 
4.2. Elliptical Gravitational Potential and Spheres  
For A ≠ 0 it is not possible that the cluster shape is spherical. Noticing that again ξ1 = (A Rvir /Rcore+ B), is it possible to find, with a 
zero value for A, a value for B for which the elliptic shape becomes straightforwardly spherical? This value for B should be B = 1 (the 
possibility A = 1 and B = 0 and Rvir = Rcore is exactly similar). Keeping A = 0 and leaving B undetermined, one now inserts in the 
virial equilibrium equation an elliptical gravitational potential. Using the shorthand definition ξ2 = (1 – 6/5 a2 ξ1/ Rvir

2), it follows: 
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2)        Mvir = (N (1+z) Rvir (a+b) / μmp G ξ2)3 
Used are the temperature to virial mass scaling relation kbT = N (1+z) Mvir

2/3 with N a normalization constant and z the redshift, and 
the elliptical virial equilibrium, derived as Mvir = kbT Rvir (a+b)/μmp G ξ2. Combining 2) with the geometry relation 1) for Mvir one 
finds: 
 
3)        ξ1 = (N (1+z) (a+b) / μmp G ξ2)3 (fb / n) μmp

-1  
Writing out ξ1 in terms of A and B, the result is, leaving out cancelling terms: 
 
4)        A = Rcore/Rvir (ξ2

-3 -  B) 
This means that B = ξ2

-3 for A=0.  In ξ2 one can insert ξ1= c/a. For a sphere, for which holds a = b = c = Rvir the result 4) reduces to: 
 
5)        B ≈ -125 ≠ 1 
When B is not equal to 1, and indeed now B < 1 meaning oblate cluster shapes, the assumption A = 0, B = 1, meaning spherical 
shapes, is ruled out. Thus, combining with the earlier inference, the result is that oblate and spherical shapes are not supported, and 
only prolate shapes are expected in our universe. 
 
5. From Prolate Cluster Shape to Dark Matter Particle Mass 
Starting from the above results, assuming only clusters with prolate shape with c/a larger than 1, one can derive straightforwardly a 
lower limit on the ratio dark matter mass to baryon mass that is independent of other cosmological and matter parameters. 
Used are the following three relations of which the first two are given as a priori and the last one is a result from paragraph 4. The first 
relation is similar to a distributive property for density fractions and the second one is understood to result from cosmological 
considerations that make the constant universal (Pen, 1997). This will be discussed further in paragraph 6. Used are abbreviations for 
properties including densities n, density fractions f, particle masses m and virial masses M, each in combination with matter type 
including baryon matter b, dark matter dm and all matter m. All matter is supposed to include only baryon matter or dark matter. 
Following tradition, the virial mass of all matter is written Mvir and mb = μmp. 
 
6)        nb = fb nm = fb (nb + ndm) = fb nb + fb ndm  
7)        fb / fdm = constant 
8)        c/a = Mvir fb / (1+z)3 Rvir

3 μmp <nb>   
Now from Mvir = Mb + Mdm and <n>vir = nvir it follows from 6) and 8) that:  
 
9)        c/a = fb (1 + mdm fdm nm / μmp fb nm) = fb + fdm mdm / μmp =  
= 1/nm (nb + ndm + ndm (-1 + mdm/μmp)) = 1 + (ndm / nm) (mdm / μmp – 1)  
= 1 + Ω dm/Ω m (mdm / μmp – 1), with Ωi = ni / nc (critical density) 
 
One expects c/a > 1, and this constraint leads to the following criterium:  
 
10)       mdm /μmp > 1 
At first sight, this criterium does not seem very spectacular. However, it rules out several candidates for the presently still un-
identified dark matter particles and favors so called cold dark matter, including WIMP’s, weakly interacting massive particles, such as 
Higgs particles. 
 
5.1. Scaling relations with Hubble constant h, cosmological parameter k and dark matter fraction 
The fractions fb and fdm can be rewritten depending on cosmological expansion factors, with h the Hubble constant and the Ω’s the 
densities divided by the critical density (Pen, 1997):  fb = h3/2 Ωb / Ωm and a similar expression for fdm = h3/2 Ωdm / Ωm. There is Ωm = 
Ωb + Ωdm because of 6). In the following, fraction fdm and constants h and k are considered to be undetermined, in alteration. In this 
way scaling relations between c/a, fdm, h, k, and mdm are derived. Scaling relations cannot easily be inverted, therefore the notation * is 
used. 
While assuming a determined Hubble constant h while fdm undetermined, mdm will turn out accordingly due to equation 9), however 
still fulfilling criterium 10). In this way fdm and mdm scale similarly:  
 
11)   c/a scales with fdm * mdm   
 
When fdm is assumed determined, and we allow a higher value for a yet undetermined Hubble constant h, also mdm would turn out to 
be higher, again due to equation 9). The other way around, a lower estimate for mdm will predict a lower estimate for the Hubble 
constant h: h3/2 scales inversely compared to mdm: 
 
12)    c/a scales with h-3/2 * mdm   
A less expressive prolate shape then correlates with a higher Hubble constant h. This agrees with relative density Ωdm

-1 and h3/2 as 
expansion parameters, assuming fdm constant. In a highly expanding universe with low Ω and high h expectation, clusters will still be 
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prolate, however with lower values for c/a, like experiencing higher shear. While 1/1+z, z redshift, is a scaling parameter, fluctuations 
and c/a values, in a small-scale universe will be relatively larger than fluctuations and c/a values in a large-scale universe, applying 
equation 8). 
When the Hubble constant h is undetermined this involves also the cosmological parameter k, the integration constant in Friedman’s 
equation:  c2 k = R2 h2 - 8π/3 R2 G nc with nc the critical density and R a measure for the universe radius. In this way scaling relation 
12) can directly be translated from h to k. Assuming the gravitational constant G and the velocity of light c unchanged, one finds: 
while the critical density is understood to depend only on a certain value (c/a)0, then with deviating c/a, k scales with R2 h2, which 
cancels to (dR/dt)2 for a Hubble constant h equal to (dR/dt / R) and 12) rewrites to: 
 
13)  c/a   scales with R3/2 * k-3/4 * mdm  
 
It is possible to resume all scaling factors in a diagram. 
 

fixed  mdm fdm h k R 
h c/a 1 1    
fdm c/a 1  -3/2   
fdm c/a 1   -3/4 3/2 

Table 1 
 

6. Discussion: A New Virial Equilibrium for Clusters Forming Finite Alignments 
Imagine a new fluctuation of the background density emerging as a prolate cluster, between existing similar prolate clusters on a finite 
rod-like alignment in the z direction. As Hopkins finds (Hopkins ea, 2005), ellipticity and alignments correlate. The gravitational pull 
at the virial surface of the new cluster cancels out, due to the gravitational presence of the already existing clusters on the alignment. 
The fluctuation will relax towards a certain virial surface baryon pressure value similar to that of its neighbors that on both sides 
balance it. Every cluster moves on a little, to make place for the new cluster till no pressure imbalance is left between them. One 
expects the baryon pressures, after some confusion, to stabilize just above the original virial surface pressures since now one more 
cluster is included in the, assumed finite, rod universe. 
This pressure excess will cause all clusters on the alignment to interact with their neighbors at least in the z direction while in the x 
and y directions the intra cluster equilibrium still holds. If intra cluster gravitational pull and surface pressure balance each other in 
ordinary 3D virial equilibrium no heating or expansion would occur and clusters would remain non-interacting. 
In this description, when finite filaments of clusters are real in the z direction, the virial equilibrium holds when accounting for all the 
energies of all interacting clusters. Because of pressure increase at the connections, velocity dispersion measures, in this z direction 
independent of gravitational pull, will tend to increase. The dark matter virial mass due to an average velocity dispersion measurement 
will tend to be overestimated likewise. In conclusion, the 3D intra cluster virial equilibrium does not hold, at least for prolate clusters 
forming finite alignments, and should be replaced by an inter cluster equilibrium.  The difference is in the z direction treatment, 
leaving the two other directions unaltered. As a consequence of a lower real dark matter virial mass estimate, the constant of the 
baryon to dark matter density fraction, in equation 7), is challenged too and expected to be too low. 
Even when at least a partial inter cluster virial equilibrium is valid, the above criterium 10) for dark matter particle mass is assumed to 
remain valid, although it is reached starting from intra cluster equilibrium. It can easily be checked that this criterium is independent 
of the dimension of the equilibrium space. Also, while the constant in equation 7) for fg / fdm is questioned, the derived results still 
seem true, since their derivation itself implies an undetermined fdm.  
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