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Abstract:

In this paper, the response to moving concentrated masses of highly prestressed orthotropic rectangular plate resting
on two parameter elastic sub-grades is investigated. In the equation governing the motion of the plate under the
action of the travelling masses, it is observed that a small parameter multiplies the highest order operator which is
peculiar of singular perturbation problems. From the literatures, problems in which the small parameter multiplies
the highest derivatives in the governing differential equation do not have closed-form solution. Problems such as this,
defile conventional mathematical methods used to obtain approximate solution, since the small parameter affects the
problem in such a way that the solution varies rapidly in some regions of the domain of definition of the problem and
slowly in the other parts. It is a well-known fact that when the problem’s small parameter multiplies its highest order
derivatives in the governing differential equation, it is only amenable to the methods of singular perturbation. Since
of all the singular perturbation methods, the method of matched asymptotic expansions is more user-friendly, it is
adopted for the solution of this plate problem. Analyses of the solution obtained for this plate dynamical problem are
shown in plotted curves. These reveal that increase in the value of prestress or shear modulus leads to increase in the
critical speed of the orthotropic rectangular plate traversed by moving concentrated mass. Also, as the rotatory
inertia or mass ratio increases, the critical speed decreases. As observed, there is more than one resonance condition
in this dynamical system which involves plate flexure under moving concentrated masses, and then, the smaller the
mass ratio, the better the improvement in critical speed.
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1. Introduction

Several researchers in engineering, applied physics and applied mathematics have shown keen interest in the
analysis of the dynamic response of elastic structures under moving loads. This is due to the great impact the vibration of
such structures have on the environment and the riding comfort of the moving load. Foremost amongst researchers of a
moving load on a plate is the work of Willis [1] who investigated the effects of weights travelling over bars with different
velocities. Others are Stokes [2], Timoshenko [3], Lowan [4], Bondar [5], Reissmann [6, 7] and the monograph of Fryba [8]
to mention but few. The operation of these moving loads — cars, heavy-duty vehicles, trucks, railways, steam and gas
engines, etc. — introduce additional dynamic stresses on the plate structure. The stresses induced in the plate are
dependent not only on the magnitude of the loads, but also strongly upon their speed of propagation. From literatures
Fryba [8] and Leissa [9] have examined this phenomenon for simply-supported rectangular plates. Also Holl [10] and
Livesley [11] considered the case of an infinite plate resting on elastic foundation and traversed by moving load. In Fryba
[8], Leissa [9] and Holl [10], critical speeds of propagation are shown to exist. The study of the behaviour of solid bodies
subjected to moving loads has been and still continues to be the concern of several researchers. Among these are the
works of Stanisic et al. [12, 13, 14], Milormir et al. [15], Sadiku and Leipholz [16], Oni [17], Gbadeyan and Oni [18] to
mention a few. The aforementioned researchers worked on one-dimensional dynamical beam problems. Among the
earliest work on moving load plate problem is the work of Holl [10]. He solved the problem of a rectangular plate under
the action of a uniform moving load. He indicated that a critical velocity existed for each vibration mode. Much later
Stanisic et al. [19, 20] studied the two-dimensional problems of flexural vibration of plates under the action of loads,
paying more attention to moving mass. Only the inertial term that measures the effect of local acceleration in the direction
of the deflection was considered. Also Aiyesimi [21] studied the dynamic response of an elastic, isotropic rectangular non-
Mindlin plate resting on a visco-elastic foundation under the action of a force moving with variable velocity. He solved this
problem for simply-supported end conditions only. Ramkumar et al [22] treated the vibration of highly prestressed
anisotropic plates using numerical-perturbation approach to obtain the displacement response of the circular plate under
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the action of general in-plane forces. The work in Stanisic et al. [14] was taken up much later by Gbadeyan and Oni [23]
who studied the dynamic analysis of an elastic plate continuously supported by an elastic Pasternak foundation traversed
by an arbitrary number of concentrated masses. The deflection of the plate was calculated for several values of the
foundation moduli and shown graphically as a function of time. Worthy of mention in this area of study are the works of
Shadnam et al. [24, 25]. Oni and Tolorunshagba [26] assessed the rotatory inertia influence on the highly prestressed
orthotropic rectangular plate under the action of moving loads. They employed the method of composite expansion (MCE)
in conjunction with the method of integral transformation and Cauchy residue theorem to obtain an approximate
uniformly valid solution in the entire domain of definition of the rectangular plate. Much recently, Awodola and Omolofe
[27], Awodola [28], Awodola and Oni [29], worked on the forced response of non-prestressed plate under moving masses.

In all the aforementioned studies, no consideration has been given to bending effects at the boundaries. In
particular, when a plate structure is highly prestressed, a small parameter multiplies the highest derivative in the
governing differential equation. Thus, the methods of solution in the works of authors under review breakdown. This is so
because while dealing with a highly prestressed rectangular plate of moderate thickness, bending effects must be duly
taken into account. In particular, the domain far from the boundaries can generally be regarded as obeying the reduced
(order) theory, whereas, close to the boundary bending effects become significant and may even dominate the
deformation pattern. Thus, a solution valid in the domain far from the boundary breaks down near and at the boundaries,
while the solutions at the boundaries breakdown far away into the domain. This phenomenon is analogous to boundary
layer in fluid mechanics, the edge layer in solid mechanics and skin layer in electrodynamics, Erich [30]. The solution in
this region is usually termed the inner solution and the solution valid away from this sharp-change region is termed outer
solution. The procedure whereby solutions valid in the boundary layers that are identified with the perturbation series
solution valid in the so called outer region is often called the matching process.

This class of plate dynamical problems in which a small parameter multiplies the highest derivative in the
governing differential equation, is not common in literature when the plate is subjected to a moving load. However, this
class of plate problems has been solved when the plate is executing free vibration or when static load is acting on such
plate. Even in exceptional cases in which a small parameter multiplies the highest derivative in the governing differential
equation of the plate problem, only the gravitational effect of the moving concentrated load is considered, while the
inertial effect of the mass of the moving load was seen to be infinitesimally small and so neglected on one hand, and on
another hand the material properties of the plate structure were taken to be independent of a direction.

Singular perturbation has, to date, seen relatively little use in solid mechanics but it has, nonetheless, been
successfully used by Cole [31, 32]. In particular, Hutter and Olunloyo [33] have employed it in investigating circular
membranes with small bending stiffness, while Hutter and Olunloyo [34] treated, among other things, the vibration of a
thick strip-like membrane under anisotropic prestress.

Another application in membrane theory is by Schneider [35] who considers the vibration of isotropically
prestressed rectangular plates with built-in edges. In his paper, he constructed outer (core) and inner (boundary layer)
solutions which are valid in partly disjointed domains. These solutions are then matched in an intermediate domain where
both asymptotic expansions are both valid. Much later Olunloyo and Hutter [36] studied the response of thin isotropic,
prestressed rectangular plate for the case when the ratio of bending rigidity to the applied in-plane loading is small. He
used the method of composite expansion (MCE) to construct solutions for various boundary conditions. Oyediran and
Gbadeyan [37] considered the case when the clamped highly prestressed rectangular plate exhibits natural material
orthotropy. The problem was solved using the method of matched asymptotic expansions (MMAE). In another paper,
Gbadeyan and Oyediran [38] compared the two singular perturbation techniques (MCE and MMAE) for initially stressed
thin rectangular plate. They found that the results of the MMAE agree with those obtained using the generalized MCE and
specialized version of MCE when the effect of shearing deformation is 0(g). Another work worthy of mention is the work
of Olunloyo and Hutter [39] who investigated the dynamic response of prestressed rectangular membrane to certain
external time- dependent forces when the effect of bending rigidity is small using the MCE. After an earlier work by Oni
[40] where he studied the dynamic response to a moving load, using MMAE, of a fully clamped prestressed orthotropic
rectangular plate, Oni and Tolorunshagba [41] took up the problem of assessing the rotatory inertia influence on the
response of the highly prestressed orthotropic rectangular plate to a travelling load using the Method of Composite
Expansions (MCE), an alternate singular perturbation technique, in conjunction with the method of integral
transformation and Cauchy residue theorem to obtain an approximate uniformly valid analytical solution in the entire
domain of definition of the rectangular plate. Analysis showed that the critical velocity of the dynamical system increases
with an increase in prestress and rotatory inertia values. Shortly after, Oni and Ogunbamike [42] worked on the transverse
vibration of a highly prestressed isotropic rectangular plate resting on a bi-parametric sub-grade and traversed by a
moving load. Also, Oni and Adedowole [43] examined the influence of prestress on the response to moving loads of
isotropic rectangular plates incorporating rotatory inertia correction factor.

More recently Are et al [44] researched on the vibrational response of damped simply-supported orthotropic
rectangular plate, resting on Winkler foundation, to moving loads.

It is remarked at this juncture that, to the best of the author’s knowledge while the effect of small bending rigidity
has been investigated for free and static load plate problems aside the works of Oni [40], Oni and Tolorunshagba [41],
calculations for this class of moving load plate problems do not exist in literature. However, in the work of Oni [40], the
effect of rotatory inertia correction factor is neglected while in the work of Oni and Tolorunshagba [41] the inertia effect of
the mass of the moving load is neglected. Novel as the works of Awodola and Omolofe [27], Oni and Adedowole [43] who
worked on prestressed plates are, the plates they considered are not highly prestressed. So, they used the conventional
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methods of solution to solve the dynamical plate problem in their research work. Thus, in this study, the dynamic analysis
of a highly prestressed orthotropic rectangular plate incorporating the effects of rotatory inertia correction factor, under
the influence of gravitational and inertial forces (moving mass) is examined.

2. Mathematical Formulation

Consider an orthotropically prestressed rectangular plate resting on a two parameter subgrade and occupying the
domain 2[0 < u < 1,0 < v < b]which is held along the four edges and traversed by a moving concentrated load which has
mass commensurable with the mass of the plate, when the rotatory inertia correction factor is incorporated. Neglecting
the effects of shearing prestress and shear deformation of the governing relation, when properly non-dimensionalized, is
of the form

4 4 4 2 2
, |9 W(x,y,t)_'_2 0*W (x, y,t)+ 0 W(x y,t) _p? *W(x,y,t) ﬁza W(x,y,t)+

oxt A pEr 17 gy 27 gy2
22W(x,y,t) 0*W(x,y,t) 64W(x v, t) 62V(x y, t) 62V(x y,t)
—_— +K +
at2 ot | " 3e2ax2 2y 3y V.8
2 2
Tob(x — ct)8(y — yo) [z . c TWE2 8y 2 2 WEr D) = gy g6(x —ut)5(y — yo) )
where it is assumed that the small parameter 0 < ¢ « 1 is defined by the relation
et =2 )

D, is the flexural rigidity in x- direction, N, is reference prestress, L is the characteristic length which normalizes the
spatial coordinates and displacement response, x, y are the spatial coordinates, t is the time coordinate, «,.is the rotatory
inertia correction factor, u is the mass of the plate per unit area, W (x, y, t) is the displacement response of the plate, M, is
the mass of the applied external moving load, G and K are respectively the shear and foundation moduli,I" |_u, is the mass

I
ratio, g is the acceleration due to gravity, 6(x — a) is the unit concentrated force, acting at a point x = q, called the Dirac
delta function with the property

b 0O x>b
Jp f8(x =) =1f() a<x<b. ©)
Ox<a
Since the plate is assumed to be fully clamped, the boundary conditions (in non-dimensional form) are
x =0, 0<y<b _ ow(xy,t) _
xr=1 OSySb}W(x’y’t)_O ow =0 (4.1)

y =0, 0<x< 1} _ oW (x,v,t)

y:b Osx Sl W(xxyxt)—O, ay O (42)

For simplicity, the plate-structure is assumed to be at rest prior to the arrival of the moving mass, and so the initial
conditions (also in non-dimensional form) are

Wy 0 =0 220 g )
3. Operational Simplification

It is observed that a small parameter multiplies the highest derivatives in equation (1). For such problems a
regular perturbation lowers the order of the differential equation —except in these regions of rapid change (often called
boundary layer) where the high value of the derivative cancels the effects of the multiplying small parameter- which, in
turn, means the solution cannot satisfy all the boundary conditions. A special treatment is, therefore, needed in the region
near as well as at the boundary where its boundary condition is yet to be satisfied. And as such, the problem is only
amenable to singular perturbations; in particular the method of matched asymptotic expansions (MMAE) is adopted.
However, equation (1) is considerably simplified by introducing the Laplace transformation defined by

C -

W(x,Y,s) = IW(X, y,t)e*dt,s >0,t >0 (6)
With the properties
Wy, )} =w(x,y,s) (7.1)
{6(t —tp)}=e~sto (7.2)
Where is the Laplace transform operation symbol Taking t as the principal variable makes equation (1) to become
4 4 2
8{6 W(gilMS) + 202 0 ;vx(zxéyyz,s) ol W(g;( Y, s)} 57 0 w(gi,zy,s) 52 ok w(x Y, ) - SPW (K 15) -
2| 0'W(X,y,s) o*w(x, y,t) o*w(x,y,s) 0*w(x,y,t) \ 2,
g S { v + Y -G v + Y + KW (X, y,s)+T,6(y =y, ){l, +2cl, +c” |

8
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where
o= 80— ct) 22D st (99)

at2

1= [ 8 — ct) 2wl WOV o-stdr (9.2)
1= [ 6(x — ct) 2t WY ost iy (9.3)
Iy = fo 5(x — ct)e‘“dt (9.4)

The integrals (9) cannot be easily evaluated and so use is made of trigonometrical series representation of the
Dirac delta function obtained from the Fourier series expansion of the function as

8(x —ct) = 1+ 2% ,[cos2mrct cos 2mrex + Sin 2arct sin2mrcx) (10)
In view of equation (10) the complete Laplace transformation of equation (8) is
6“W(x ) %0 26“\N(x Y,8) ra , 0'W(X,Y,) ﬂzaz\N(x ) ﬂzaz\N(x Y, s)
ot ox2oy? % oy’ Lo 2oyt
2 ~ 2| O'W(x,y,5) W (X, Y,t) o'W (X,Y,8) 62W(x y,1) (1)
SW(X,y,8)—ay S [ v . Y } [ v }+ KW(Xx,Y,s) +
T8 (Y = Yo)[SPW (X, Y, 8) + 26"SW, (X, ¥,5) + " W, (x,y,5)] = %95 (y- yo)ef%
subject to the boundary conditions
x=0, 0<y<b
y W (x,y,s)=0= M (12.1)
x=1 0<y<b OX
=0, 0<x<1
y W(x,y,s)=0= M (12.2)
y=b 0<x<1 oy
together with the initial conditions
W(x,y.0)=0= W (13)

4. Solution Procedure

In equation (11), an exact uniformly valid solution in the entire domain2 is not possible since it is observed that a
small parameter multiplies the highest derivatives in the governing differential equation in accordance with the informal
principle that the behaviour of solution is governed primarily by the highest order terms. This is due to the bending effects
at the boundaries. Consequently, solution valid away from the boundaries breaks down near as well as at the boundaries.
Thus, only approximate solutions are possible. The two but equivalent approaches, that could be used to tackle this type of
problem, are the method of composite expansions (MCE) and the method of matched asymptotic expansions (MMAE). In
this work, MMAE is used. This technique provides an approximate solution to the given problem in terms of two separate
expansions which are valid in a closed interval 2[0 < x < 1,0 < y < b]. The two expansions are called inner and outer;
neither of them is uniformly valid but their domain of validity together covers the interval Q. The method of matched
asymptotic expansions (MMAE) requires that the asymptotic solution of equation (11) be of the form

W(X,y,t) =W, (X, y,t) +eW, (X, y,t) (14)

Substitution of equation (14) into equation (11) gives, after rearranging and equating coefficients of the powers of ¢, the
following recurrence relations

M —sx
~Ds(y-y, e v=0
. (15)
H (0,90 vt
DV*W, ,(x,y,s) v>2

where
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oW, (x,y,8) ,0°W, (X,Y,s)
+c
OX ox?

(16.1)

KW, (x,y,s) +T,8(y -y, )(szwv (X, Y,S) +2¢s

and

o'W, _,(X,Y,s o'W, _,(X,Y,s o'W, _,(X,Y,s

v-2 (4 y )+2a12 v—22( 2y )+a22 v-2 (4 y ) (162)
OX ox°oy oy

Here the subscript of W (X, y, s) denote the order of & and V* = V? .V ?(V ?is the Laplacian operator), while D is as

earlier defined.
Subject to the transformed conditions at the boundaries

Wj(x, Y, S)|X:0,1 = Oj =0,1,2, ..

oo e

(17.1)
oW, (X, Y,s) 0
~Yj=0,12..
aX x=0,1 J
Wi (x, y,s)|y:0'b =0 =012
(17.2)
oW, (X, Y,s) 0
~Yj=0,12..
OX y-0b J
Consider the inner solution, fashioned after (14), of the form
WiX,y,s) = Wi(X,y,s) + eWi(X,y,s) (18)

valid at x = 0 where the inner variable issetas X = E
where superscript i refers to inner solution. Equation (18) is also valid near x = 1, where the inner variable is set
asX = 1_Tx Expressions similar to (18) can be written down for the solutions near y = 0 and y = b, where the inner

variables are set respectivelyas Y = f andY = b;—y, thus
Wi(x,Y,s) = Wix,Y,s) +eWi(x,Y,s) 19)
Substitution of equation (18) into equation (16.1) near either x = 0 or x = 1 produces respectively

A Wi(X,y,s 02 W R AN
THEL) (67 + s+ Gy — €T, 6y = y,)] g = T

[8F + apes® + Gyl

ox* 0X? dy?
34’in_2 Xy i (Xy.s) 0, v = 0,1,3,4,
20(%# [Ko + 52 + 52 Tos(y— yo)] —2(xys) — 26T 6y — y, awa—X”-'-{Mog(Y(y—yo)e%sx’ v=
(20)
or
o'W!(X,y,s o°W/'(X,y,s oW/ (X,y,s o*W/!(X,y,s oW /'(X,y,s
v(4y )_ﬁlZ v(zy )_aOtSZ v(zy )+C2F06(y_y0) v(zy )+G0 v(zy )
oX oX oX oX oX
WL (X, y,8) L S WL (X, y8) L, WL (X, Y.S) |
=2csT,8(y -y, ) X — 2/ ox 2ay? + B o +sW',(X,y,s)
o'W ,(X,y,s
+ g S? V‘g)(lz ¥5) g 03(Y = Yo W, 5 (X, y,5)+ u°g e, v=2 (21)
Subject to boundary conditions
i — (= WEys) _
WiX,y,s)= 0= — v=0134,.. (22)
Similarly, near y = 0 or y = b, one obtains the differential equations
*Wyirys 0*Woixy s
a%% — (BF + ags* + Go)%

W, 2(xys) a* Wv—4(erx S)_ a? a4WU—2(X,Y,S)
0x? ox* 1 ox20Y?

= [B? + apes? + Gy — c*Ty6(y — YO)]
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oWy —p(x,Y,5) s2+ K,
—2scTy6(y — YO)L“ +52T,6(y — 0 ) Wo2(eys), v=0134.. (23)
and
264Wv(x,Y,s) 2 4 24 azVl/v(x,Y,s)
az G2 (B + ages 0) av2 i . .
d W—Z(st) d Wv—4(erx S) d Wv—Z(st)
= [B? + ages? + Gy — c*Tp6(y — ¥o)] o —20; ——o
d0x? dx* 0x20Y?
oWy —2(x,Y,5) s?+ K,
—2scT6(y — YO)L“ +52T,6(y — 0 Vo) Wy 2(ys) + Mog (v — YO)eC ) v=2 (24)
Subject to the boundary conditions
Wi y,s)= 0=20E0) -y =0123 (25)

4.1. Solution Process

The solutions of equations (20) for the function W,(x,y,s) and equations (20), (21), (23) and (24) for the
functions W, (X, y,s) and W,(x,Y,s) subject to the respective boundary conditions (22) and (25) are sought using finite
Fourier sine integral transformation method.

4.2. Leading Order Solution
Here the solutions of W (x, y, s) and W{ (x, y, s) are sought.

4.3. Solution for W’ (x,y, s)
Substitute v =0 in the recurrence equation (15), the governing differential equation for Wy’ (x, y, s) is given as

2w 2w 2w 32w, (x.y, 2w
B2 aO:ij) ﬁz 0(xy5) s2V, +a0t52[ 60(926,%5)_,_ O(Xys)] KWy (x,y,5) + Gy ;i?;ys)+ at;f;c,y,s) _

ow, a w,
Lo8(y = ¥o) |s Wo<x,y,s> +2sc 220+ ;(’;“’] ~Mog 8(y — yp)e " (26)

Now, one attempts equation (26) for the solution of W (x, v, s) by introducing the finite Fourier sine transform defined as

W(m,y,s) = fol W(x,y,s)sinmmx dx 27)
W(x,y,s) =

With the inverse
2y2_W(m,y,s)sinmmx (28)
and W(x,n,s) = fob W(x,y,s) sinnbﬂdy (29)
W(x,y,s)= %Z;ﬁzl W(x,n,s)sin nbﬂ (30)

With the inverse
Thus, the transformation of (26) with respect to x is

0*Wy(m,y,s)
—anz + piWy (m,y,s) = 7,6(y — ¥o) (31)
Where
B2m?n?—s2+m?nlags?—Ko+m?m2Go—T o8 (y—yo)+(s2+c?m?n?)
ot = B3 +ators?+Go (32.1)
Mogmncz[l—(—l)me__cs]
1= (32.2)

(B2 +apts2+Gy)(s2+c2m?2n?)
The general solution of (26) is

We(m,y, s) = Gycospyy + G,sing,y + ~sing, (y = o) (33)
While the transformation with respecttoy is

azwi’:zc,n,s)+ , awoa(zm)'(l’swo (x,n,5) = 7,0 -sx/,, (34)

where

0, =BE + ages? + Gy — 2 (35.1)
2lgsc

s (352)

93 = LB = st s = Ko + Gy = ), (35.3)
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T,= ¢ > [y, (35.4)

The complimentary solution of (34) is
W, (x,n,5) = Gze¥?* + G,e??* (36)

Where
Vi = @2+ —4ps (37.1)
Y2 = @2 — @ — 43 (37.2)

Making use of the method of variation of parameters, the particular solution of (34) can be shown to be

WOp(x n, S) = (V1 Vz) (CV1+S)[ —e (CY{rS)] en® +m (CV2+S)[ € (CYiJrS)] ers* (38)

Consequently, the general solution of the ordinary differential equation (34) is

0 _ _ (cy1+s) Vix 75 _ (cy2+s) Vax

Wo CGenis) = Gze?* += Gyen* +(V1 ~Y2) (CV1+5)[ € ‘ ]e o 2—v1) (CV2+S)[ € ‘ ]e ’
(39)
The inversion of (33) and (39) gives the general solution of the equation (26) as
c
We(x,y,s)= 2 [Glcosq)ly + G,sing,y + szn¢1(y yo)] sinmmx += [Gsel’1 += G,e"1* + (n yz) (CV1+S) [1 -
e (*47) ]eyl" + —( ) [1 —e cyi+s)] eVZ"] sin—= (40)
(r2—v1) \cya+s b

Where G, G, G; and G, are arbitrary constants that are yet to be determined by matching.

5. Leading Order Solution (Inner Problem)
The differential equation governing the inner solution (near x = 0,1,) in equation (15) where one neglects the
terms with negative subscripts, one obtains for the leading order problem

4,1 2
%— [B7 + ages? + Gy —CZFO(Y(y—yO)]%:O (41)
Subject to .
wi(X,y,s) = 0 = 2062) (42)

Solving equation (40) subject to equation (41) produces

) b, (y) [X +9ie_91X _ai]’ near x =0
Wi(X,y,s) = : h (43)

b, (y) [X +ée‘91x - é] nearx =1
where

07 = B} + ags* + Gy — €Ty 8(y — o)
Similarly, the differential equation governing the inner solution (near y = 0, b) in equation (15), when one neglects the
terms with negative subscript, one obtains for the leading order problem

*wi(xv.s) 502w (xY.s) _
i 03 =0 e
Subject to Wi(x,Y,s) =
W (xY.s)
ay (45)
Where
2 (B%+af0¢sz+60)
92 - a,% (46)
Solving equation (44) subject to equation (45) produces
. fo(x) [Y+Bie‘92y—9i , meary=0
Wé(x,Y,s) =< . N ; 47)
fo(x) [Y+9—e‘92”—9—], neary =>b
2 2
Thus, the leading order solution of the inner problem (20 — 22) can be written down as
- 1 1
by(y) [X+—e‘91X -— near x =0
by () [X + e 0iX i] near x =1 (48)
" " 1 1
fox) [Y+—e‘92y—— neary =0
6 6,
z 1 1
fo(x) [Y+—e‘92y—— neary =b
6, 6

where exponentially growing terms have been discarded as unmatchable. The functions b, , b, , f, and f, are yet to be
determined. The unknowns in (40) and (48) will be determined by matching inner and outer solutions. To this end, Van
Dyke’s matching principle, which requires m-term inner expansion of (the n-term outer expansion) equals the n-term
outer expansion of (the m-term inner expansion), is adopted. Thus, matching one-term outer expansion written in inner
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variable (40) with one term inner expansion written in outer variable (48) (1-1 matching) immediately produces

b (x) = b(x) =[f(y) =fo =0 (49)
Mogmmnc?|1—(-1)"ec

Gy = sing, y, (50.1)

(B2-aots2+Go)(s2+c2m2m2)

_T1 _ ‘l.'_1 _ Mogmmc?[1-(~1)"e ™S/ ¢|sing,yocote1b

G, = P singiyo,cotg, b COS(plYO (BZ—aors?+Go)(s2+c2m2n?) (50.2)
_ Ty _ Cy1+$)

G = G (cms) [1 € (Jﬂ)] (50.3)
—_ _ T2 _ 2

Gy = (r1-72) (cy2+s) [1 e ] (50.4)

In view of equations (49) and (50) equation (40) becomes
_ 2M0gmncz[1—(—1)me_s/c]
Wo(x' Y s) = (B?-apts2+Gp)(s2+c2m?2n?)

Mogmmc?[1—(-1)"e~5/¢] | . . T . . { ( c ) [
-2 — + V2Xx —
ranTran)re? 1'[2) Sing, Yocosp,ysing, y | sinmmx + 2% sing,(y — yo)sinmmx e (yz yl) )12

. . T . cos@qbsin T .
sing,yq,cos@ ysinmmnx + 2 [¢_1 sm(plyo% - (p—lcosq)lyosm(ply -
1 1

Cy +S Ccy +$ cy +S
e : ]+ eVl" ( )[1—e(2 ]+ erz* ( )[1—e : )]}smm
(V1 Vz) cy1+s (Vz V1) CY2+s
(51)
Where
5 _ [BEm?n?—s?+m?nlages? —Ko+m2m2Go—To8(y—yo)(s2+c2m?n?)] _ 2Tgsc
& B2+ aors™+Go ’ vz B3 +aots? +GO_%
2122 —p2s2+n2n2ays?—b?Ko+n2?m?Gy—bs2Ty _ Mogmmc?[1—(-1)"e "5/ 1"1099_‘”‘/051‘ﬂm(l (52)
$s = b2B%+b%ages2+b2Go—bloc? ! L7 (B2+ags?+6Go)(s2+c?m?m2) 2 B2 +ages? +GO_0_‘32
=@ VO —A9s L V2 =0 —V9; — 4gs,
B? — ag,s% + Gy = —ag, [52 _ B —] — age[s? — wi] (53)
. o . _a’ot Qot
Further simplification of equation (51) produces
_ D —[1-(=1)™e~S/c] . A3(s?+As)
W(x,y,s) =2M.gmmc?3sin mnx{a0t(52+A5)(52+A2) [aoz(s +A1)]
_ Az(s%+A4) 3(s2+A4)
Cos [stshay 7OV ki vty K v
(s24A1) - [A3(s2+A4)
@ot(S™+A1 A3(52+A4)(52+A2)Sm[aot(sz+A1)
i B o G O S [ [A3(52+A4)] [A3(52+A4)] ; [A3(52+A4) [1-(-1)™e"S/1 . [A3(52+A4) [M

Qot(s2+ Ag)(s2+ Ag)° Aot (s2+A1)" 7 ° Qot(s2+A1) ape(s2+A1) 2A3(s2+A4)(s2+A5) Qot(s2+A1) Aot (s2+A1)

[1-(-1)™e=S/,] [A3(52+A4) . [A3(s +A4)] 3+ 2M°gmnczsin% ( c )[1—e_("1+s/c]erlx L1y (5

A3(sZ+A4)(s2+Ay) aot(sz+A1) Qot(s2+A1) baot cry+s ri—Ty s2+Ag  SZ+A4

The Laplace inversion of (54) is defined as
Woo(xxyxt) = Pbl{Fl(xtytt) +F2(x1y1t) _F3(x1y1 t) +F4(x1y1 t) _Fs(xxyxt)}"'sz{Fe(x:yx t) - F7(x1y1 t)}

(55)
where
P, = 2M.gmmc? sinmmx (56.1)
_ 2Megmnuc? . nmy
Py, ——b%t sin— (56.2)
1 ratico o [-(-D™MeS/c] . A3(s%+A4) A3(s%+A4)

Floyt) = 2mi fa—iw € ot (524 As)(s2+ Az) Sin [agt(sz+A1)] 0C052 [aot(sz+A1)] ds (56.3)
Fy(x,y,t) = — [£11% gst [1-(-1)™e=5/;] [ﬁjt((ssz?ff) bt [ﬁjffsszA“l)) yds (56.4)
2, 2mi Ya—ico A3(s2+A4)(s2+A3) Sin[As((522+A4)) '
aor(s?+Aq

— 1 ratio o [1-(-1)™e™5/] . [As(s®+A4) A3(52+A4) A3(s%+A4)
F3(x ) 2mi fa—iw € aot(s2+ A5)(52+A2) [aot(s +A1)]y aot(sz+A1)] [aot(sz+A1)] yds
(56.5)
_ 1 ratioo oSt [1-(-1)™e™5/,] Asz(s2+A,) A3(s%+A4)
FyCxy.t) = 2mi fa ico A3(s2+A4)(s2+A3) n [aot(sz+A1) y Cos [aot(522+A1)]y0 ds (56.6)
_ 1 ratico o [1-(=1)™e”5/(] A3(s%+A4) . [As(s?+A4)
Fs(x,y,t) = 2mi fa—ioo A3(s2+74)(s2+A3) [a’ot(52+/\1)] [“ot(52+1\1)] ds
(56. 7)
_ 1 ratio o ¢ [1—e_("1+s/c] e¥
Fe(x.y.t) = 2mi fa i € (cr1+s)(r1—12)(s%+A6) (56.8)
1 a+ioo st C[l—e_("l*'s/c] eT1x
F7(x Y t) = 2mi fa io0 (cry+5)(r1—12)(s2+A4) (56.9)

In order to evaluate the integrals in (56), the Cauchy residue theorem is employed. The singularities in the
integrals are poles. In particular the denominators of the integrands of F,(x,y,t), F,(x,v,t),F;(x,y,t), F,(x,y,t),
and Fs(x,y, t) have simple poles atS = *iAg, S = %iA,,S = %iA, ,S = xil,,Itis straightforward to show that
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Sin[A3(A4_A‘Z’) 310C05[A3(A4 A‘Z’)‘
_ “ot(Al_Aé) “ot(/\1 A_Z,) iAet —ilg
Fl(xryr t) - ZiAs(Az—Aé)a’ot {el 5 [1_ (_1)me /C] -
i 2(am02) o Aa(hahd)
i Sin [ 53] Yo Cos: A
—ihst[] _ (_ iAg L aor(r—r3) aor(A1-A3)
e ; [1—(-1)me"5/]}+ T
{eihzt [1 —(=D"e _‘AZ/C] —eTthat [1 —(=D"e ’AZ/C] } (57.1)

A3(Asa—0G A3(Asa—0G
Cos[ (1 4)}b Sin [ajt((fl—fi))}

Fy(x,y,6) = 2 A3y (A2 —02) (A2, +A3)
Cos[ A3 (A4_A%2) ]b Sin [A3 (A4_A%2) 1y
a A —A «a, A —A . ] . —7
e - Come i ey
A3 (A§1+A4)
L“ot(/\gﬁf\l) ‘Zot(/\§1+/\1)
2 Ap1A3 (A%, +A4) (A%, +47)

Y{ jeifat [1 —(=D™e _iA4/C] — jehat [1 —(=D™e iA4/C]} +

COSrA3(A§1+A4)

]bSin[

Y{ ehait [1 —(=D™e _A21/C] + { e—hat [1 _ (_1)meA21/C] }.
(57.2)

A3(Ag—3)
woz(/\r/\?,)] Yo Cos [

Az (A4—A§) e A3 (A4—A§) q

351y Sin [ 5]

Fy(x,y.t) = aor(A1-AF) aor(A1-A3)
Y E= 2iagehs (A;—A2)

feitst |1 - (—1yme /| eminst [1— (—1yme s/ |y +

Sin [-

: 3(Ay—13 3(Ay—13 : 3(Ag—13 i m. —iA
an 0 xSy oy 1 Come L
e~ izt [1 — (_1)me lAZ/C]} (573)

L) (g

231 Yo .
Fy(x.y. t)= @or(h1-13) @or(h1-43) {ieitst [1 — (=1)™e —1A4/C]}

. 2304 (A% -A4) ]
_ {ieiAzt [1 —(=D)™e _lAZ/C] _ {ie—iAzt [1 —(-Dme lAZ/C] } (57.4)
Fy(x,y,t) = cos [—;‘jt(&‘*l‘_fé))] y sin [—ijt(&‘*l‘_AA‘%))]yo fietst [1— (=1yme T/ - fieimat [1— (~1yme e/ | +
A3(Ag—A%) . rAz(Ag—13)
] a’ot(Al—A@] ysin [“ot(Al_A%)]yo '
fiethat [1 — (~1yme ~2/c] - iemthat [1 — (~1yme /]y (57.5)
fo(x,y,x) =

eM1t[1-e~01ek1* |(a2,+41)(a31+10)

(a11-217)(111-418)(111-419)(111—420) (43146 )/ (411 -212)(111-213)(A11—414) .

en2t[1-e~2]ek2* |(12,+a1)(a3,+10)

cos [

(a12-217)(112-418)(112—419)(112—420) (43,46 )/ (412—211)(112—113)(A12—414)

eM3t[1—e~3]ek3x /(A§3+A1)(A§3+A9)

(/‘13_A17)(A13_/‘18)(/‘13_A19)(A13_AZO)(A%3_A6)\/(A13_All)(A13_A13)(A13_A14)

eM4t[1-e~04Jeka* |(12,+a1)(34+0)

(57.6)

(414=217)(114—218)(114—419)(114—120) (43446 )/ (412—211)(114—113)(114—113)

fr(x,y,t) =

€A11t[1—€_a1]€k1x

2015(111—417)(a11—418)(a11—410)(a11—120) (4231 —11)\/(a11—212) (411 —413) (411 —414)
€A12t[1—€_a2]€k2x

2415(a12—117)(112—-218)(a12—410)(a12—420) (a3 3—21)\/(a12—211)(a12—213)(a12—114)
eA13t[1_e—ac3]ek3x

2"15("13_/117)(/‘13_/118)(/‘13_A19)(A13_AZO)(A%3_Al)\/(A13_All)(A13_A12)(A13_A14)
€A14t[1—€_a4]€k4’x

57.7
2415(a14=17)a14=118)(a14=210)(114—020) (154 —41)V/(a14=211)(114—112)(a14—213) ( )

The combination of the results (57.1 — 57.7) substituted into (55) yields the desired leading order solution of (26)
which represents the uniformly valid solution of the entire domain of definition of the given plate.
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5.1. First Order Correction

5.1.1. Solution for W2(x.y.t)
The next corrections in outer solution are obtained by setting v = 1 in equation (15). The governing equation for

WR(x,y,t) is given as
92 92 92 92
At v12/1 (x,y,8) + s2W; (x,y,s) — ag.s? [a:? (x,y,5) + a;: (x,v, s)] +

—y2 2
Vige (x,y.8) —v; 3y )
[oé [Sle (x,,5) + 2us T2 (x,y,5) + u? =2 (x,y, S)] =0 (58)

Now one attempts the solution of W, (x, y, s) by introducing the finite Fourier sine transform in (27) in equation (58) with
respect to x, and after simplification and slight re-arrangement, produces

Wy (m,y,s) + n*Wy(m,y,s) =0 (59)
where

5 _ [Is?+m2?n2ages®—m2n2yZ+T8(y—yo)(s? —(mmu)?)]
7= [ aotsz—yzz ] (60)
The homogeneous solution of (59) gives
Wy (m,y,s) = By cosny — B, sinny (61)

Similarly, if equation (58) is subjected to finite Fourier sine transform (29) with respect to y, and after simplification slight
arrangement, one obtains

2
a Vtalx(—?"'s’ +niWi(x,n,s) =0 (62)
Where
Y2, o2 g (P g2
n3 - 5% °‘(ué’rz (63)

—Vf—“ot52+T
The solution of which is

W, (x,n,s) = B; cOsn,x — B, sinn, x (64)
The finite Fourier sine inversion of equation (61) together with equation (64) gives
Wi (x,v,s) =2X%_,[B; cosny — B,sinny] sinmmx + %Z,"le[Bg cosn,x — B, sinn, x] sinnbﬂ (65)

where B, B,, B; and B, are unknown constants to be determined by matching.

6. First Order Correction (Inner Problem)
The first order correction is obtained by setting v = 1 in the differential equations (20) and (23). Doing this and

47l
neglecting terms with negative subscripts yields aaril (x,y,5) — [y + apes® —
92 i
uPlo8(y — ¥l 52 (x,,5) = 0
Rewritten as
a*wi a*wi
o) _ o2 — L9 = 0 (66)
Where
) o7 = [yf + ages® — u_Z_FO(Y(y = yo)l (67)
Subject to the boundary conditions
. ow!
Wi(x,y,s) = 0= —x22 (68)
Following usual argument in equations (41) and (44), the first order correction of the inner problem can be written as
b,(y) [x +—e0x— L near x =0
Py Py
_ l?l(y) X+ — e 01X — i] nearx =1
Wi(x,y,s) =< ‘1’31 @1 (69)
A 1
+ —p P2y — — =
f1(x) [y P = neary =0
2 1 1
+ —p P2y — — =
f100) [y o = neary =b

Here exponentially growing terms have been neglected as unmatchable. The function b, (v), l?l(y), fi(x) and fl(x) will be
determined by matching. By matching one term outer solution with two terms inner solution expansion written in outer
variable, produces the following.

~ _ Mogmmc?[1-(-1)™e =5/ |sing1y,
bl(y) - 2mn{ (B3 —aots2+Gp)(s2+c2m2m2)

[cosp,y — cotp,b sing, y] + ;—1$in<p1yo [cote,b sing,y — coswly]}
1
(70)
sing,; yo(cosp,y — cot,b sing;y) + ;—1$in<p1yo(cot<p1b sing,y —
1

Mogmmc?[1—(~1)"e~5/€]

(B2-aprs2+Go)(s2+c2m2m2)

b, (y) = —2(~1)™ mn{

cosQ,y) — =2 ﬁsinfplycoswlyo} (71)
a M, 2[1—(-1)™ -s/c . .
filx) =2 {T1 - (50%9_72:;2[&0)(5 2+i2m2]:21)} sing, yocoto, bsinmmx (72)
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{ Mogmmc?[1—(~1)"e~5/¢]

¥1 iz sing;y,Sing, b sinmnx — T1COS(p1y0COS(p1b} (73)

fl(x) = —apes2+Gp ) (s2+c2m2m2)
One seeks an asymptotic outer solution of the form

WP (x,y,s) = 2[B, cosny — B,sinnylsinmmx + % [B; cosn,x — B, sinn, x] sin nbﬂ (74)

By matching two terms outer solution with two terms inner solution (2-2 matching) of equation (68) as € — 0, one obtains
B;=b [Zmn (% sinyo) cosny — 2mm (% cscnb[sin(b — y,) — siny, cos nb]) sinny + %mn sin(y — yo)]

(75)
=2 (—sm(yo)> (-1)™" 1 (mr) + 2 ( cscnblsin(b — y,) — smyocosnb]) sinny(—=1)"*(mm) + —sm(y —
[e_(ﬁ+91)—1] [e_(ﬁ+92)—1]

yo)(—1)m+ + = Ble 10, sin=2 + = Bze9292 s,lnm — —mm et smn"y 6, — %mm e?20, smnbﬂ

(76)
Mogmmc2[1—(—1)Me~S/¢ .

B, = [{Tl - (ﬁo%g—amsz[w;)(s)z+c2m2]:21)} sm(plyocot(plbo]/Hz
(77)

B. = p1Mogmmc?[1-(-1)e ™5/ |, sing, v, _ T1C0591Y0c0s@P1b  T1¢0591b Mogmmc?[1—(~1)™e~5/]6, cos?p, bsing,1yo

2 02 (B3 —aors2+Gp)(s2+c2m2m2) 0,singqbsinmnx  6,sin@.b 02 (B3 —aors2+Go)(s2+c2m2n2)sing, b

(78)

In view of equations (75) — (78) equation (74) becomes
0 _ __ Mogmmc?[1-(-1)™e~/ |y | . + {¢1Mogmn02[1—(—1)me‘s/c]¢1sin¢1yo _

4 (xxYx S) {2 [{Tl 02 (B2 —aors2+Go)(s2+c2m?2) Sln(plYOCOt(plb /92 * COSQ Y + 2 0, (B2 —ators?+Go)(s2+c2m2m2)

T1C0591Y0C05p1b  T1C05p1b Mogmmc?[1—(~1)"e~5/€]6, cos? g1 bsing1yo

} sin(ply} sinmmx +

0,sin@ bsinmnx  6,sin@.b 02 (B?—aors2+Go)(s2+c2m?n?)sing, b
2 (-1)"mn Mogmmc?[1—(~1)"e~5/¢] ] ] . T . .
sin cos — cot@,b sin +—sin cotg,b sin + cos —
[{b or (72— )™ | (57 —tors0o) 5 s comiEn) P1yo(cosp,y @1b sing,y) + - sing, yo(cot, b sing, y $1y)
¢_ cos<p1yosin(p1y} eVZ] sin T (79)
1
Wherer. = Mogmmc?[1—(~1)"e~5/¢] _ |[B3m2n2-s2+c2m2n2ages2—ko+m2n2Go—To8(y—yo)(s2+c2m2n?)]
1= (B2 +aopts2+Gy)(s2+c2m2r2)’ B3+agts2+Go !
B3+Go 2.2 2 2.2 2 m2mn2[p2+Go—c?To8(y—yo)|—ko (B3+6o)
AN =—— A, =c*mm* A; =c*m*n - —1—-T,6(y — A, = A = Ay =
1 Zor | 2 133 00y = o). Ay m2n2age—1-To8(y—yo) 5 ar ' 6
bGo+bBZ—Toc? A = n2n2ag;—blo—b? A= n2m2 B2 +n2m2Go—b2ky _ bGy+bB2-Toc? A = m?n2 (B2 +aoe+Go—c2Tod(y—yo) )~k
- = - y g —

b2 : 8 T n2m2qg—blo—b2 bage 1410 T 1-To8(y—yo) ’

Moge_sx/csin—qngy

barOt
2lgsc

— 22 2 —
As =n*may. — bl'y — b%,, = e 2= )

<Bl+a0ts +GO_T)
Further simplification, rearrangement of equation (79) gives
2 [Mogmnc2 [1 - (=1)me=s/¢] N Mogmmc?[1 — (—1)me=s/¢]

Vo(x,y,s) =3 —
?(xy.5) 0, Aoe(s?+ Ay) Aor (52 — M) (52 +Ay)

apt(sZ+Ag)

Als?2+A0 | . Asls? +A,] As(s?+A,) As[s? + A,]
aoe(s? +Ay) S aoe(s? +4y) Yoo age(s? +Ay) €os aoe(s? +4y)
A3 (s? + A)Mogmmc?[1 — (—1)™e /<] sin As[s? + A,] y
e (52 + Ay) 0,0 (52 — Ajg)(s2 + Ay) g (s2+4A,)7°

Mygmmc?[1 — (—1)me=s/¢] As[s? + A,] As[s? + A,] 1
- coS 0
0,00: (5% + Ay) %t[(fz "iAl) 0 ([th(ST +A,) *sinmmx
_ . A3z|s“+A Az|s®+A
M, gmmc? [1 —(-1)™e s/c]sm [m b cos [m b
B . A3[s2+A4]
B0, (s? + A )sin [ 22T
2 - Az[s?+A4] As[s?+A4]
Mong[C [1 N (_1)me S/C]COS [afOt(s +A1)] bs [afOt(s +A1)] Yo A3 [52 +A4] , "
+ 2 2 Az[s2+A4] a (SZ +A) Yy ¢ sinmnx
0,00 (5% — A1) (s2 + Ay)sin [ = +A1)]b ot 1
- [s
2 (CoMmmeryx |Mogmue?[i-(-1Mem/1] S‘”[m]y" [As[s +A4]] i [As[ 2 ] [A3(s +A4)] b+
b91(671 eYZ)SlnnZy —age(s2—A10)(s2+A3) aot(s2+A1) y = aor(s2+1y) yc 20r(s2+11)
- [ Az[s®+A4]
Mogmmc2[1-(—1)Me=/|ag,(s2+A;) sm[a;t(sh:l)]yo ( [A3[s +A4]] [A3(s +A4) b+ cos [A3[52+A4] ) B
@or(s2+A1)A3(s2+A4) 2 ot (s2+A1) ye ot (s2+A1) aot(s2+A1)
- Az[s%+A4] ) A [s2+A4]
Mogmmc?[1-(-1)"e s/c]aot(sz+A1) cos[a;t(sh:l)]yo sin ‘7‘03t(52+A41)] ]
Qot(s2+A1)A3(s2+A,)
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_ A
2 (~1)™mme1¥ Mogmﬂ:cz[l—(—l)me s/C] szn[ia;t(52+/\1)]y0( [A3[s +A4]] i [A3[ +A4] [A3(52+A4) ) .
b91(971 972)smw —age(s2=A19)A3(s2+Ay) apt(s2+A1) y- apt(s2+A1) apt(s2+A1)
. [ A3[s?+A4]
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Substitution of evaluated integrals E;(x,y,t) — E;¢(x,y,t) into equation (81) produces the complete inversion of
W1 (xx yt t)

From equation (14), the perturbation scheme of a uniformly valid solution in the entire domain of definition of the plate
problem is given as

W(X,y,t) =W, (X, y,t) + W, (X, y,t) (84)

whereW0 (X, y,t) and W, (x,y,t) are respectively the leading order solution and the first order correction. These are

given as (55) and (81) in that order. In view of equations (55) and (81), equation (84) becomes the required uniformly
valid approximate analytical solution of the plate dynamical problem.

6.1. Remarks on Theory

Equations (55) and (81) are the leading order and the first order (transformed) solutions of the problem. The
leading order and the first order solutions are combined in equation (84) to form the composite solution which is
uniformly valid in the entire domain of the highly prestressed orthotropic rectangular plate.

It is observed from the leading order and first order solutions that fully clamped highly prestressed orthotropic
rectangular plate traversed by moving concentrated masses and resting on Pasternak foundation reached the resonant
state whenever

Ay = A2 (85)

Other conditions when the system operates at a frequency which equals the natural frequency to display an
enhanced oscillation are

A3 =019, Age =430, A1 = A3, Az = 2508NMAL, = 4, . (86)

From (85) and (86), it is observed that the resonance conditions of the plate are dependent on anisotropic
prestress, mass ratio, rotatory inertia correction factor, shear and foundation moduli.

At this juncture, the critical speeds for the system of a highly prestressed orthotropic rectangular plate under the
action of travelling masses are sought. Few of the critical speeds that exist in the dynamical system are given as

— [mm)2(BE+Go)-Ko
c(m,m) = m o
4 2
c,(m,m) = m%f % -
c3(m,m) =%i%\//3—7/4 -

]1 = —(TnT[)2 Ko — 1-— FOS(y—yO)
J2 = 2mnlos(y-y,)
] _ ((mn')z()(ot—l—rog(y_yo))z

3

milos(y—yo)
_ (mm)?2B%+(mm)?Gy—Ko

Ja=

where

(mm)2Fo5(y-y0)

6.2. Numerical Simulation

In order to illustrate the analytical results, for instance, the orthotropic rectangular plate is taken to be of length
22

1.0 m and width 0.9 m. Other values used for the analysisareb=0.65m,g=9.81, 7 = — Yo =02
c= 8.128?. The values of the prestress ratio in the x-direction range between 0 and 2 000 N. The critical speeds are

plotted against prestress for various values of other parameters. The process is repeated for mass ratio, shear and
foundation moduli in turn.
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CRITICAL SPEED VERSUS SHEAR MODULUS FOR VARIOUS VALUES OF
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Figure 1: The Graph of Critical Speed (1) against Shear Modulus for Various Values of Prestress
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Figure 2: The Graph of Critical Speed (1) against Shear Modulus for Various Values of
Rotatory Inertia Correction Factor (Rot= o,;)
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Figure 3: Graph Showing Critical Speed against Rotatory Inertia Correction
Factor for Various Values of Prestress
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Figure 4: Graph Showing Critical Velocity against Prestress for Various Values of Mass Ratio
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Figure 7: Graph Displaying Critical Speed against Rotatory Inertia for
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Figure 9: Showing the Graph of Critical Speed (2) against Shear Modulus for Various Values of Mass Ratio
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Figure 11: Showing the Graph of Critical Speed against Shear Modulus for
Various Values of Rotatory Inertia Correction Factor
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Figure 14: Showing the Graph of Critical Speed against Shear Modulus for Various Values of Prestress

27

| Vol 10 Issue 4 DOI No.: 10.24940/theijst/2022/v10/i4/ST2204-003

April, 2022


http://www.theijst.com

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE ISSN 2321 - 919X www.theijst.com

From the figures displayed, it is discovered that at whatever critical speed, increase in prestress results in
increase in critical speed (i.e. figures 1, 3, 6, 13). In the same vein, increase in the value of shear modulus yielded increase
in critical speed (see figures 4, 7, 14). On the other hand, increase in either rotatory inertia correction factor or mass ratio,
produces a reduction in critical speed (see figures 2, 5, 8, 9, 10, 11, 12). Thus, for high value of prestress, the structural
design under consideration is more stable and reliable.

Evidently, the critical speed increases with prestress for all values of rotatory inertia correction factor used. Thus,
resonance is reached earlier for lower values of prestress than for high values of prestress. Thus, the design is more stable
and the risk of resonance is remote for high values of prestress.

It is clearly seen that increase in the values of rotatory inertia produce decrease in critical speed which connotes
lower risk of resonance.

For smaller values of mass ratio, the critical speed is higher indicating that the durability and stability of the
structure is guaranteed.

The rotatory inertia correction factor does not affect the system significantly as the prestress values increase.

It is also observed that the smaller the mass ratio, the greater the critical speed, indicating that the lightness or
heaviness of bodies on structures is significant in the consideration of critical speed.

7. Conclusion

This study concerns the problem of the dynamic response of a highly prestressed orthotropic rectangular plate
resting on Pasternak elastic foundation and traversed by concentrated moving mass. The problem is governed by a fourth
order non-homogeneous partial differential equation. For the purpose of solution, the equation of motion of the plate
problem is presented in a non-dimensional form. It is observed that a small parameter multiplied the highest derivatives
in the governing differential equation. In accordance with the principle that the behaviour of solutions is governed by the
highest order term, the choice of a suitable method of solution is made. Thus, this type of dynamical problem is usually
amenable to singular perturbation technique. In particular the Method of Matched Asymptotic Expansions (MMAE) is
used. This technique constructs outer (core) and inner (boundary layer) solutions that are valid in partly disjoint domains.
These solutions are then matched in order to obtain a composite solution that is uniformly valid in the entire domain of
definition of the rectangular plate. This solution is analysed for some resonant states in the dynamical system. A numerical
simulation is carried out and the study reveals the following results:

e The leading order solution and the first order correction are affected by the mass ratio, anisotropic prestress,
shear and foundation modulus. However, the effects of rotatory inertia correction factor are not appreciably
noticed.

e As the prestress or shear modulus increases, the critical speed of the orthotropic rectangular plate traversed by
moving concentrated mass also increases. Also, as the rotatory inertia or mass ratio increases, the critical speed
decreases.

e There may be more than one resonance condition in a dynamical system such as this which involves plate flexure
under moving concentrated masses.

e The smaller the mass ratio, the better the improvement in critical speed.

Finally, this work has showcased the use of a valuable method for the solution of this class of dynamical problems,
and the valuable results will be useful for the design and construction of engineers.
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